Introduction
Le combustible particulaire TRISO
Le combustible TRISO n’a rien d’un concept nouveau. Son apparition dans l’actualité, expliqué en fin d’article, est lié à un renouveau de ces particules inventées…
Au milieu des années 50 !
L’actualité ne faisant qu’un recyclage médiatique du TRISO, je me livre également à du recyclage : le contenu de ce billet est en quasi-totalité issu de cet excellent livre :
Le combustible TRISO, pour TRIStructural ISOtrope, a été inventé au Royaume-Uni, initialement pour leurs réacteurs graphite/gaz AGR et MAGNOX. Il se présente sous la forme d’une particule faite d’un cœur de matière fissile, typiquement du dioxyde d’uranium, à l’instar des pastilles de nos classiques réacteurs à eau. Mais ici, pas de pastilles cylindrique de 8 mm de diamètre, mais un minuscule orbe d’1 mm de diamètre.
Ce cœur fissile est enrobé d’une première couche en carbone pyrolytique (ou pyrocarbone) qui sert d’isolant thermique vis-à-vis d’une seconde couche, elle en carbure de silicium, qui assure l’étanchéité de la particule. Le tout est complété d’une seconde couche de pyrocarbone pour assurer la tenue mécanique, permettant à la particule de conserver son étanchéité même sous l’assaut d’une énorme pression interne (la fission nucléaire libère des produits de fission gazeux, qui contribuent donc à faire monter en pression le milieu fissile).
Cette dernière couche permet, par ailleurs, de jouer un rôle de liant pour agglomérer les particules dans des éléments plus larges, en graphite : des structures prismatiques ou bien des boulets (pebbles). La résultante est un combustible ayant d’excellentes propriétés mécaniques et thermiques, dont privilégié pour les HTR.
Les Réacteurs à Haute Température
Principes
Les HTR, pour High Temperature Reactors sont un concept lequel, à l’instar de celui des réacteurs refroidis au sodium, est à la fois passéiste (5 HTR ont produit de l’électricité par le passé sur 3 continents) et futuriste : c’est un des concepts de « Génération IV ».
Le principal atout de ces réacteurs est donc, comme leur nom l’indique, leur haute température de fonctionnement. Celle-ci permet non seulement un rendement élevé pour la production d’électricité, mais permet aussi des applications non-électrogènes : production de dihydrogène, de chaleur industrielle…
Un cœur de HTR est composé de très nombreux prismes ou de boulets, eux-mêmes agglomérant d’innombrables particules TRISO. Nous en venons donc à un cœur composé de milliards de particules ce qui a, sur le papier, un gros avantage, et un gros inconvénient. Dans l’ordre :
- La composition du cœur peut être adaptée à l’infini, entre différents matériaux fissiles, fertiles, absorbants, s’accommodant de n’importe quel cycle du combustible. De notre classique cycle Uranium 238 / Plutonium 239 au fantasmé cycle Thorium 232 / Uranium 233, lequel n’est pas exclusif aux réacteurs à sels fondus, comme l’on peut parfois l’entendre et le lire.
- Avec une centaine de milliards de particules dans un même cœur, le contrôle de la qualité de leur fabrication est excessivement chronophage en comparaison avec les actuels crayons de combustible (quelques dizaines de milliers par cœur).
Historique
À la première heure, trois HTR utilisant la particule TRISO furent réalisés. En premier lieu, une coopération internationale donna naissance à Dragon, implanté au Royaume-Uni, avec une puissance thermique de 20 MW. Dragon a volé fonctionné de 1964 à 1975.
Les USA et l’Allemagne suivirent le pas, respectivement avec Peach Bottom (115 MW thermiques, 40 MW électriques) et AVR (46 MWth, 15 MWe). Tous deux démarrèrent en 1966 ; le premier stoppa son activité en 1974 et le second en 1988.
J’ouvre une parenthèse sur un usage particulier des HTR. Je mentionnais précédemment la mise à profit des hautes températures pour la production d’hydrogène ou de chaleur industrielle… Mais il y a un autre domaine très spécifique qui serait intéressé par la combinaison de la densité d’énergie du nucléaire et l’atteinte de hautes températures… C’est le spatial.
Tous les réacteurs conçus pour le moteur-fusée-nucléaire NERVA, du petit Kiwi 1 de 70 MWth au PHOEBUS 2A de 4300 MWth en passant par le PEEWEE de seulement 515 MWth mais atteignant la température record de 2750 °C, tous sont des concepts de HTR.
Mais revenons à l’électronucléaire. Après les prototypes Dragon, Peach Bottom et AVR, il était temps de passer à l’échelle industrielle.
En 1974 démarra le réacteur américain de Fort Saint-Vrain (dont l’architecture fut d’ailleurs en partie repompée sur les réacteurs UNGG français de Saint-Laurent-des-Eaux). Sur sa fiche technique, 842 MWth, 330 MWe. Puis, en 1983 en Allemagne, le THTR : 750 MWth, 300 MWe (notez le rendement de 39% là où les réacteurs à eau de l’époque atteignaient 33%, et aujourd’hui atteignent laborieusement 37%). Ces deux réacteurs furent mis à l’arrêt définitif en 1989. Fort Saint-Vrain est, depuis, démantelé et ses installations non nucléaires ont été reconverties en centrale à gaz naturel.
Ces réacteurs connurent, vous l’aurez constaté, un succès aussi fulgurant que leur mort industrielle, avec au plus 15 ans de fonctionnement à Fort Saint-Vrain, avec un facteur de charge moyen de 30%. Ce réacteur fonctionnait mal et coûtait trop cher pour être rentable, ce qu’on ne demandait pas aux prototypes, mais que l’on attendait de ce modèle industriel. Quant au THTR, c’est la politique allemande qui signa sa mort (les auteurs du livre dont je tire tout ceci établissent un parallèle avec Superphénix à ce titre).
Récapitulatif : atouts et faiblesses du combustible TRISO
De ce combustible, on notera, en sa faveur:
- Le haut rendement et les hautes températures qu’il permet,
- Sa robustesse mécanique et thermique, sa très forte inertie thermique, et sa stabilité chimique du fait du refroidissement à l’hélium, et donc un réacteur globalement extrêmement sûr et permissif,
- Sa compatibilité avec tous les cycles de combustibles,
- Sa faisabilité démontrée et le fait que les limites furent poussées très loin via le programme NERVA,
- Son intérêt remarquable dans les applications non électrogènes.
En revanche, on pourra lui reprocher :
- Sa faible densité de puissance, et donc la nécessité d’atteindre des tailles de chaudières très conséquentes, avec un impact très à la hausse sur le coût de la chaudronnerie et du génie civil (certains projets abandonnaient en conséquence l’enceinte de confinement),
- Sa sûreté, étant donné qu’exclure en totalité ou quasi-totalité le risque de fusion (en tout cas jusqu’à une certaine puissance) ne suffit pas à garantir la maîtrise de tous les risques : par exemple, une arrivée d’eau provenant du circuit secondaire était susceptible de provoquer une très forte corrosion des structures, une brutale montée de réactivité de la réaction en chaîne, ou une vaporisation rapide au contact du combustible brûlant et donc d’une très importante surpression dans le circuit, potentiellement dommageable pour son intégrité,
- Le fait qu’aucun prototype ne fut un succès industriel.
Enfin, on notera que sa compatibilité avec tous les cycles du combustible, un atout indéniable dans le cadre de la Génération IV, se heurte à une limite technique : les procédés de retraitement qui permettraient de fermer le cycle (pratiquer le recyclage) n’existent pas encore. À défaut, il est envisagé d’aller chercher de très hauts taux de combustion, c’est à dire des valeurs très élevée d’énergie tirée de chaque gramme de combustible, et donc des quantités de matières valorisables faibles dans le combustible usé : le recyclage n’aurait donc plus grande utilité.
Le retour dans l’actualité
Contrairement à mes impressions initiales, il s’est avéré que l’apparition du TRISO dans l’actualité n’était pas une curiosité inexpliquée : il y avait bien eu du mouvement dans l’industrie nucléaire, américaine en l’occurrence, à ce sujet.
L’entreprise X-Energy développe un HTR de 200 MWth et, depuis 3 ans, produit du combustible TRISO à petite échelle. En attendant leur propre réacteur, ils viennent de signer un contrat pour exporter leur combustible au Japon.
Il s’y trouve un HTR de recherche de 30 MWth de 1998, arrêté après le séisme de Tohoku, mais qui est en bonne voie pour redémarrer prochainement.
Par ailleurs, une autre entreprise américaine, BWXT, le seul producteur historique de combustible TRISO à grande échelle, annonce reprendre bientôt la production qu’il avait stoppé.
Ce redémarrage doublé d’une augmentation de la capacité de production serait financé par plusieurs organes institutionnels US, qui s’y intéressent à des fins de recherche, mais surtout d’applications spatiales et militaires (des réacteurs mobiles).