Déchets #10 Brûler les déchets nucléaires

Introduction

Non, on ne fera pas de réacteur capable de « brûler », ni de recycler les déchets radioactifs. Telle que l’on connaît la physique, ce n’est pas possible. Pourtant, beaucoup semblent y croire. D’où ça vient ? Est-ce qu’il y a une part de vérité ? On peut VRAIMENT pas ?

J’ai fait ce billet court (le thread initial tient en 25 tweets 😎) parce que j’ai déjà développé de nombreuses thématiques abordées sur ce blog. N’hésitez pas à ouvrir les liens pour approfondir, mais vous devriez comprendre les grands enjeux de ce thread sans rentrer dans les détails non plus !

Fusion nucléaire

On va tuer rapidement une première fausse idée reçue : la fusion. Non, la fusion n’aura aucune interface avec nos déchets issus de la fission nucléaire (réacteurs électrogènes, de recherche, navals, cycle du combustible, médical, armement…).

Certes, la fusion nucléaire utilise du tritium, que l’on retrouve aussi en grande quantité dans le combustible nucléaire usé (cf. Des histoires de tritium et L’eau contaminée au tritium de Fukushima). Mais des quantités faibles, qu’il serait sans intérêt d’aller chercher dans les déchets.

D’autant plus que le tritium, en France, est en large partie rejeté, et le reste joue un rôle complètement anecdotique dans le volume et la dangerosité des déchets. Bref, la fusion produira moins de déchets radioactifs, oui, mais ne réduira aucunement ceux déjà produits.

Neutrons rapides

Maintenant, la vraie confusion : les surgénérateurs, type Phénix / Superphénix / Astrid. Et là, ça va se compliquer, attention. Enfin, on va essayer de faire simple quand même ; si vous voulez la version complète, c’est ici : Astrid et la filière sodium.

Combustible usé

Les assemblages de combustible (on en parlait plus en détails ici : Cycle #4 La fabrication du combustible), après usage, ça ressemble aux assemblage frais : des gaines, des grilles, des raidisseurs, des ressorts.

Et puis, dans la gaine, la matière nucléaire. Bon, tous ces éléments métalliques structurels et les gaines, c’est contaminé, c’est activé (rendu radioactif par l’irradiation), ça fera (en France) des déchets de Moyenne activité à vie longue (MAVL). On y reviendra.

Et la matière nucléaire, à l’intérieur, de 96% d’uranium 238 et 4% d’uranium 235, c’est devenu :

  • 95% d’uranium (relativement peu irradiant, demi-vie très longue),
  • 1% de plutonium (moyennement irradiant, demi-vies moyenne à longue selon les isotopes),
  • 4% de fragments de la fission, les produits de fission (extrêmement irradiants, demi-vies relativement courtes – quelques siècles – pour la majorité mais longues à très longues pour quelques isotopes).

À l’exception des produits de fission, cette matière est valorisable : le plutonium présente un extrême potentiel énergétique, et l’uranium, moyennant ré-enrichissement, peut être réutilisé. Encore faut-il séparer tout ça.

Et… Dans la plupart des pays nucléaires, rien n’est fait. Après usage, l’assemblage combustible, dans son ensemble, est un déchet. Très radioactif, à longue vie, et merde au potentiel énergétique des 96% de matière valorisable. C’est notamment le cas aux USA.

À l’autre extrémité du spectre, en France, on est leaders dans le traitement/recyclage : Cycle #7 Recyclage, MOx, URT et URE. C’est-à-dire que l’assemblage combustible usé, on va le découper, on va dissoudre la matière nucléaire, et on va avoir deux flux. L’un, solide, est composé des gaines, des embouts, des éléments structurels. On sèche, on compacte, dans un fût et hop -> Déchet MAVL. L’autre, liquide, c’est un jus d’uranium, plutonium et produits de fission.

On va extraire les deux premiers, les séparer, et on se retrouve alors avec trois nouveaux flux.

  1. Le plutonium, qu’on va envoyer dans une usine de recyclage pour refaire du combustible nucléaire,
  2. L’uranium, recyclable, autrefois recyclé, et bientôt à nouveau recyclé,
  3. Et les produits de fission qu’on va sécher, calciner, puis vitrifier : on aura donc les déchets de Haute Activité à Vie longue, HAVL.

Identification des déchets

En France, quand on parle des déchets radioactifs, on sous-entend souvent {MAVL + HAVL}. Ce sont eux qu’on prévoit de stocker en grande profondeur. C’est le projet Cigéo. Les autres déchets sont en quantités bien plus grandes mais bien moins radioactifs et essentiellement à « vie courte », donc on en parle moins. Passons.

Que retenir de tout ça ?

En France, quand on parle de déchets, on parle de ce qui reste après séparation des matières réutilisables. On parle en fait de « déchets ultimes », de résidus pour lesquels il n’existe aucune perspective de réutilisation.

Les réacteurs à neutrons rapides

Et donc, les surgénérateurs dans tout ça ? Ben en fait, le combustible recyclé, qu’il soit au MOX ou à l’uranium ré-enrichi (URE), on ne le traite pas une deuxième fois. On parle de mono-recyclage. Ce sont des limites techniques qu’on peut un peu repousser… Mais il y a quand même des limites. Donc en l’état actuel, le MOX usé, l’URE usé, ils sont destinés à devenir des déchets dans leur intégralité, sans traitement, comme le combustible de base aux USA.

Et c’est là qu’interviennent les surgénérateurs : Cycle #8 Une perspective d’évolution à long terme.

Dans des surgénérateurs, on peut « multi-recycler ». Recycler le MOX et l’URE, encore et encore. Et donc n’avoir à chaque fois que les petits volumes de MAVL et HAVL qui forment des déchets, jamais le combustible dans son intégralité.

Aujourd’hui, c’est le scénario qui fait encore référence en France. Donc le combustible usé (ordinaire, MOX ou URE) n’est pas classifié « déchet » mais bien « matière valorisable ». En conséquence, ce qu’on appelle déchet n’est pas valorisable, même en surgénérateur.

Ce qui doit aujourd’hui aller à Cigéo n’a de toute façon, à quelques détails près (pas l’objet ici), aucune autre perspective : Déchets #5 Les alternatives au stockage géologique.

Donc ne croyez pas que ces réacteurs nous libéreraient du souci des déchets.

Ils aident énormément en permettant de valoriser le valorisable, mais tout n’est pas valorisable. Par contre, laissez dire les anglo-saxons : chez eux, tout le combustible est déchet… Et donc les surgénérateurs permettraient bien de réutiliser les déchets. Mais ils auront des déchets résiduels, quoi qu’il en soit.

Si l’on voulait pouvoir brûler nos réacteurs en neutrons rapides… Il faudrait officiellement abandonner ces derniers. Alors, le MOX usé, l’URE usé, l’uranium de retraitement, l’uranium appauvri, le plutonium… sans perspective de recyclage, devraient alors être requalifiés en déchets. Et une fois ceci fait, les réacteurs à neutrons rapides pourraient être qualifiés de solution pour « brûler » ces déchets. Ça vous paraît absurde, comme raisonnement ? Je pense que ça l’est. Mais également que c’est ce dont certains politiciens sont capables.

Déchets #9 L’Histoire du stockage géologique en France

Dans cet article, dont vous retrouverez la version thread Twitter ci-après, je vous propose une petite rétrospective maison du processus réglementaire et scientifique de la gestion des déchets radioactifs aujourd’hui dédiés au stockage géologique : ceux de haute activité ainsi que ceux de moyenne activité à vie longue. Pourquoi ? Parce que les politiques, décennies après décennie, n’ont eu vocation qu’à repousser la prise de décision, comme vous allez pouvoir le constater, et donc nourrir la fausse idée selon laquelle on ne saurait « pas gérer les déchets radioactifs »…

1991

Le Parlement demande au CEA, au CNRS et à l’ANDRA d’étudier diverses solutions pour gérer au long terme les déchets les plus radioactifs. La feuille de route leur donne 15 ans pour rendre leur copie. On se référera à ce point de départ comme la « Loi Bataille », et Alexis a quelques anecdotes à son sujet.

L’article 4 de cette loi est celui qui nous intéresse ici.

« Le Gouvernement adresse chaque année au Parlement un rapport faisant état de l’avancée des recherches sur la gestion des déchets radioactifs à haute activité et à vie longue et des travaux qui sont menés simultanément pour :

  • la recherche de solutions permettant la transmutation des éléments radioactifs à vie longue présents dans ces déchets ;
  • l’étude des possibilités de stockage réversible ou irréversible dans les formations géologiques profondes, notamment grâce à la réalisation de laboratoires souterrains ;
  • l’étude de procédés de conditionnement et d’entreposage de longue durée en surface de ces déchets.

Ce rapport fait également état des recherches et des réalisations effectuées à l’étranger.

À l’issue d’une période qui ne pourra excéder quinze ans à compter de la promulgation de la présente loi, le Gouvernement adressera au Parlement un rapport global d’évaluation accompagné d’un projet de loi autorisant, le cas échéant, la création d’un centre de stockage des déchets radioactifs à haute activité et à vie longue et fixant le régime des servitudes et des sujétions afférentes à ce centre.

Le Parlement saisit de ces rapports l’Office parlementaire d’évaluation des choix scientifiques et technologiques. »

Ainsi, lors de ce point zéro, il était bien question d’étudier différentes alternatives et, si le stockage géologique devait ressortir comme l’option la plus crédible, se préparer dès 2006 à la création d’un centre de stockage. Notons également qu’il était déjà alors question d’éventuelle réversibilité du stockage géologique.

Toujours 1991

La DSIN, qui deviendra plus tard l’ASN, édicte la « Règle fondamentale de sûreté » (RFS) III.2.f qui définit les objectifs à retenir pour le stockage définitif des déchets radioactifs en formation géologique profonde.

2005

L’ANDRA, l’Agence nationale pour la gestion des matières et déchets radioactifs, remet le « Dossier argile ». Celui-ci prétend aboutir à la conclusion qu’un stockage de déchets radioactifs dans la couche argileuse où le laboratoire est déjà implanté est faisable.

Ce dossier fait l’objet d’une instruction par l’IRSN, l’Institut de radioprotection et de sûreté nucléaire. En deux mots, le stockage y est qualifié de « faisable » et le dossier ne présente pas « d’élément rédhibitoire ». Et donc si une décision parlementaire devait être prise en 2006 en faveur du stockage géologique, l’IRSN juge que les données disponibles le justifieraient.

Cet avis de l’IRSN est alors présenté au « Groupe permanent d’experts de l’ASN pour les installations destinées au stockage à long terme des déchets radioactifs. » Ce groupe conclut :

Des résultats majeurs relatifs à la faisabilité et à la sûreté d’un stockage ont été acquis.

2006

Tous les experts ont rendu leur avis sur le stockage géologique. À l’Autorité de sûreté nucléaire, l’ASN, de trancher. Puis viendra le tour pour le Gouvernement et le Parlement de se décider.

L’ASN considère que le stockage en formation géologique profonde est une solution de gestion définitive qui apparaît incontournable.

Avis de l’ASN sur les recherches relatives à la gestion des déchets à haute activité et à vie longue

C’est sans ambiguïté et un appel du pied explicite au Parlement.

Lequel, toujours en 2006, trouve malgré tout que ces quinze années sont passées drôlement vite, et que l’on ne serait toujours pas en mesure de décider. La décision est repoussée à 2012, et les études et recherches vont pouvoir continuer. L’ANDRA prend notamment alors en charge les recherches sur l’entreposage de longue durée.

L’article 3 de la loi 2006-739 du 28 juin 2006 propose d’approfondir toujours les trois mêmes axes de recherche :

  1. « La séparation et la transmutation des éléments radioactifs à vie longue. Les études et recherches correspondantes sont conduites en relation avec celles menées sur les nouvelles générations de réacteurs nucléaires […] afin de disposer, en 2012, d’une évaluation des perspectives industrielles de ces filières et de mettre en exploitation un prototype d’installation avant le 31 décembre 2020 ;
  2. Le stockage réversible en couche géologique profonde. Les études et recherches correspondantes sont conduites en vue de choisir un site et de concevoir un centre de stockage de sorte que, au vu des résultats des études conduites, la demande de son autorisation […] puisse être instruite en 2015 et, sous reserve de cette autorisation, le centre mis en exploitation en 2025 ;
  3. L’entreposage. Les études et recherches correspondantes sont conduites en vue, au plus tard en 2015, de créer de nouvelles installations d’entreposage ou de modifier des installations existantes, pour répondre aux besoins, notamment en termes de capacité et de durée […]. »

Que voit-on ? Que l’on repart pour un tour, déjà, sur avis du Parlement, contre celui de l’Autorité de sûreté, n’en déplaise à ceux qui crient à la technocratie ou à l’absence de démocratique en la matière. L’on voit aussi apparu que le stockage doit à présent être réversible. Et on note des dates qui, vues de 2022, nous font bien rire : un prototype d’installation de séparation ou transmutation avant fin 2020 quand Astrid a été abandonné en 2019, ou une demande d’autorisation de création de Cigéo en 2015 quand on l’attend pour 2023 ou 2024…

2008

La RFS III.2.f est abrogée par l’ASN qui la remplace par un « guide », le premier guide de l’ASN, sur le stockage définitif des déchets radioactifs en formation géologique profonde.

2009

L’ANDRA présente un rapport d’étape sur Cigéo, marquant le passage d’une phase de faisabilité à une phase d’avant-projet.

2010

Le CEA, alors encore Commissariat à l’énergie atomique, présente un rapport d’étape sur l’évaluation technico-économique des perspectives industrielles des filières de séparation et transmutation des substances radioactives à vies longues. 

2012

Sur cette base, l’IRSN rend un avis sur la séparation/transmutation. L’institut y déclare que la faisabilité n’est « pas acquise » et que les gains espérés, y compris en termes de sûreté, « n’apparaissent pas décisifs. »

Toujours 2012

Le CEA complète son rapport d’étape d’un rapport complet sur la séparation-transmutation des éléments radioactifs à vie longue, au titre de la Loi Bataille de 1991.

L’ANDRA est également à l’heure au rendez-vous et livre son bilan des études et des recherches sur l’entreposage et conclut que cette solution constitue un soutien au stockage géologique plus qu’une alternative.

2013

L’ASN s’appuie sur les deux rapports du CEA et sur l’avis de l’IRSN et conclut sur la transmutation : cette option ne devra pas être « un critère déterminant pour le choix des technologies examinées ».

Côté État, on se lance dans un débat public avant de trancher, et c’est de manière assez prévisible, l’option du stockage géologique qui en ressort.

2016

Forte fut la procrastination, mais cette année-là, le Parlement, et à une très grande majorité, vote l’adoption du stockage géologique comme solution de référence.

La loi 2016-1015 du 25 juillet 2016 précise « les modalités de création d’une installation de stockage réversible en couche géologique profonde des déchets radioactifs de haute et moyenne activité à vie longue ».

La même année, l’ANDRA dépose auprès de l’IRSN, pour instruction, les deux Dossiers d’options de sûreté (DOS) de Cigéo, pour les phases d’exploitation et post-fermeture.

L’ANDRA saisit également l’Agence internationale de l’énergie atomique, l’AIEA, pour demander une revue internationale sur les DOS. Celle-ci rendra rapidement ses conclusions : projet robuste, méthode adaptée. La revue internationale suggèrera des thématiques à investiguer davantage.

Le contenu du DOS et les discussions engagées au cours de la mission ont donné à l’équipe de revue une assurance raisonnable quant à la robustesse du concept de stockage. Constatant que, dans de nombreux domaines, la recherche est toujours en cours pour la démonstration ou la confirmation de la sûreté, l’ERI a identifié quelques domaines supplémentaires qu’il serait utile d’approfondir, afin de renforcer la confiance existante dans la démonstration de sûreté : production et transport des gaz, description du vieillissement des composants du centre de stockage au cours de la période d’exploitation, incertitudes liées au temps de resaturation des alvéoles de stockage et effet sur la dégradation des colis de déchets, rôle des microbes et formation potentielle de biofilms au cours de la période d’exploitation, et conséquences des défaillances non détectées.

Les DOS sont également instruits par la Commission nationale d’évaluation qui en restituera une analyse et des recommandations pour améliorer le projet.

2017

À son tour, l’IRSN rend la sentence de ses experts sur le DOS. Le projet fait état d’une « maturité technique satisfaisante au stade du DOS », mais il demeure des points durs. En particulier, la démonstration de maîtrise du risque d’incendie pour une certaine une famille de déchets de moyenne activité est insatisfaisante. Si cela n’est pas rédhibitoire pour l’avancement du projet Cigéo, pour ces déchets, pas de stockage possible en l’état, les études doivent continuer. Soit en vue d’une amélioration de la démonstration de sûreté, soit en vue d’un reconditionnement des déchets pour neutraliser leur réactivité chimique.

Les Groupes permanents d’experts de l’ASN pour les installations destinées au stockage à long terme des déchets radioactifs et pour les laboratoires et usines du cycle vont dans le même sens que l’IRSN :

En conclusion, les groupes permanents estiment que le DOS transmis par l’ANDRA montre que les options de sûreté de Cigéo sont dans l’ensemble satisfaisantes, hormis le cas particulier des bitumes. Sur cette base et compte tenu des engagements pris par l’ANDRA, une démonstration probante de la sûreté du projet de stockage devrait pouvoir être présentée dans le dossier de demande d’autorisation de création correspondant, sous réserve d’un traitement satisfaisant des points soulevés dans le présent avis, dont certains pourraient nécessiter des modifications d’éléments de conception.

2018

L’ASN rend son avis sur le DOS et le soumet à consultation du public. Bilan : « maturité satisfaisante » à ce stade. L’ASN reprend certaines recommandations précédemment émises pour les étapes futures (lesquelles seront la Déclaration d’utilité publique, attendue en 2022, et le Décret d’autorisation de création, dont la demande est prévue pour 2023 ou 2024).

La même année, une commission d’enquête parlementaire sur la sûreté et la sécurité des installations nucléaires soumet un rapport qui préconise de « poursuivre l’étude de la solution de l’entreposage de longue durée en subsurface comme alternative éventuelle au stockage géologique. » Et ce en dépit de tous les acquis précédents contestant la pertinence de l’entreposage comme alternative, motivé par les seules postures de militants antinucléaires.

2019

La députée  LREM Émilie Cariou, rapporteure du débat public susmentionné, propose l’entreposage comme alternative au stockage géologique. En tirant, là encore, un trait sur les travaux scientifiques et parlementaires depuis 1991.

La même année, la Commission nationale du débat public, dans le cadre du débat public sur le PNGMDR 2019-2021, demande à l’IRSN une revue bibliographique des recherches internationales sur les alternatives au stockage géologique. L’IRSN répond à cette demande, j’en parlais dans cette série d’articles. Je résumais ainsi l’avis IRSN :

  • Arrêter de produire des déchets ainsi que l’entreposage en (sub)surface ne sont pas retenus car, par essence, ils ne sont pas des alternatives au stockage géologique.
  • De même pour la séparation-transmutation, qui est au mieux un complément, pas une alternative.
  • L’immersion et le stockage dans les glaces polaires ont des limites techniques sérieuses et, surtout, des verrous politiques et éthiques.
  • L’envoi dans l’espace est une catastrophe en termes de sûreté et de coût.
  • Le stockage en forage a un potentiel très intéressant pour certains déchets, plus discutable pour d’autres mais sans problème majeur.

2020

L’ANDRA publie son dossier d’enquête publique préalable à la déclaration d’utilité publique.

2021

La Commission d’enquête sur la demande de reconnaissance d’utilité publique du projet Cigéo rend son rapport. En résumé :

La commission d’enquête considère que le projet est à la fois opportun, pertinent et robuste au regard des textes réglementaires qui stipulent un stockage des déchets en couche géologique profonde sur un site disposant d’un laboratoire souterrain.

Au terme de ce bilan entre d’une part le risque, et d’autre part les mesures de précaution la
commission d’enquête estime la proportionnalité acquise et pertinente.

La commission d’enquête émet un AVIS FAVORABLE à la Déclaration d’Utilité Publique du projet de centre de stockage en couche géologique profonde des déchets de haute et moyenne activité à vie longue (Cigéo), assorti de CINQ recommandations ci-après.

Les cinq recommandations sont les suivantes ;

  1. D’établir un échéancier prudent des aménagements préalables dans l’occurrence de l’obtention des
    autorisations ;
  2. De veiller à une insertion paysagère harmonieuse avec le paysage rural ;
  3. De procéder à un défrichement progressif du bois Lejuc, aux seuls besoins de la DRAC afin de
    préserver au maximum la biodiversité ;
  4. De maintenir un écran visuel sur la partie sud pour préserver les vues depuis les villages
    environnants ;
  5. De compléter la communication envers le public de son territoire proche et l’adapter en fonction
    de la phase opérationnelle de Cigéo, tout en reconnaissant l’importance de la communication déjà
    réalisée par le maître d’ouvrage.

Toutefois, en parallèle, la Banque publique d’investissement (BPI) lance un appel à projets appelant à chercher des solutions alternatives au stockage géologique profond.

Conclusion

Ce thread débute en 1991. La décision devait être prise en 2006. Elle a été repoussée jusqu’en 2016, pour des raisons… Variables, souvent politiques. Depuis, toutes les étapes ont conforté la décision faite alors. Et pourtant, 30 ans après la loi de 1991, 15 ans après la loi de 2016, on n’a pas encore mis le premier coup de pelle pour Cigéo. On repousse…

Et surtout, les décideurs (ça te va, les décideurs ?) font énormément d’efforts… Pour ne pas décider ni devoir décider, pour revenir en arrière, remettre en question les décisions et acquis précédents, essayer encore et encore de nous faire repartir vers 1991.

C’est pour cela qu’il est encore si facile de clamer « on sait pas quoi faire des déchets » ! Si, on sait quoi faire, depuis 15 ans, et chaque jour depuis, on sait un peu mieux. Mais on procrastine. Les opposants n’ont évidemment pas intérêt à encourager la prise de décision. Les élus… Pareil. Le statu quo est confortable, devoir s’engager sur un tel sujet est terrifiant. Chacun lègue à la « génération » (électorale) future.

Et encore, ma chronologie est ultra franco-centrée ! Mais la démarche parallèle a lieu dans des tas de pays, et les résultats sont cohérents !

Dans ce thread ci-dessous, je décortiquais un rapport de l’Agence pour l’énergie nucléaire de l’OCDE. Son joli nom : Management and Disposal of High-Level Radioactive Waste : Global Progress and Solutions.

Les optimistes me rétorqueront que la recherche sur les alternatives est nécessaire pour justifier de l’intérêt de la réversibilité du stockage géologique, et pour l’acceptation par les politiques et le public, et qu’elles n’empêchent pas le projet d’avancer. En effet, l’idée d’avoir un stockage réversible pendant environ un siècle est de pouvoir changer d’avis si une alternative émergeait d’ici là. Donc, évidemment, il faut chercher des alternatives, quand bien même sait-on qu’il n’y a rien à espérer qui remettrait en question la pertinence du choix du stockage géologique.

J’espère seulement qu’effectivement, ces errements ne freineront pas à nouveau le projet, et que les différentes formations politiques au pouvoir se garderont de nous renvoyer sans cesse en 1991 à vouloir étudier les alternatives, encore et encore, avant de prendre une décision.

Les clés pour décider, on les a déjà. L’enquête pour la DUP de Cigéo est bouclée et, d’ici deux ou trois ans viendra celle pour le Décret d’autorisation de création. Le moment ultime de prendre cette lourde décision.

Le processus accompagnera le mandat du Président élu en 2022 et le Décret d’autorisation de création pourrait être prêt en toute fin de mandat, donc à la veille d’une échéance électorale. Que faut-il attendre ? En tout cas, je pense que ce thread le montre assez bien, il n’y aura, sauf révélation majeure, aucune raison d’encore procrastiner. Alors, que fera-t-on ?

Je vous laisse entre les mains du Président de l’ASN. Parce qu’il a l’intelligence d’être d’accord avec moi.

(Joke, hein)

Déchets #8 « On ne sait pas gérer les déchets nucléaires »

Ce billet est une nouvelle tentative de synthétiser, en une fois, la réponse à cette affirmation, c’est-à-dire de rappeler les grandes principes de la gestion des déchets radioactifs, en France, aujourd’hui.

Déchets à vie courte

Plus de 90% du volume de déchets radioactifs produits à ce jour en France consiste en des déchets à vie courte ou de très faible activité. Pour ceux-ci, une gestion responsable, vis-à-vis des générations futures, demande de répondre globalement aux mêmes enjeux que pour la plupart des déchets ménagers ou industriels que nous produisons depuis des décennies, dans des quantités plusieurs ordres de grandeur supérieures à celles des déchets radioactifs.

C’est une question que, à mon sens, l’on peut politiquement et rationnellement aborder de deux manières différentes. Soit l’on considère à peu près convenable notre actuelle gestion des déchets au sens large, en France, auquel cas il en est de même pour 90% des déchets radioactifs, soit l’on conteste la gestion actuelle des déchets au sens large, mais alors les déchets radioactifs ne sont qu’anecdotiques, une goutte d’eau dans l’océan qui attire une attention disproportionnée et éloignée des vrais enjeux.

Déchets à vie longue

En plus de ces déchets, nous avons à charge 10% du volume de déchets que l’on dit « à vie longue » et qui concentrent 99,9% de la radioactivité des déchets radioactifs produits en France.

Ceux-ci méritent une gestion spécifique, en raison de ce qu’ils impliquent pour les générations futures.

Aujourd’hui, et à court terme, leur gestion n’est guère un sujet, ni technique, ni de société. Cependant, cette gestion repose sur des infrastructures qui nécessitent une maintenance régulière et un renouvellement toutes les quelques décennies, quelques siècles au plus.

De fait, reposer sur l’actuelle solution de gestion portée sur le long terme implique fortement, nos descendants, lesquels auront à charge de surveiller ces infrastructures et de, périodiquement, en extraire les déchets, reconditionner ces derniers, et les ré-entreposer dans de nouvelles structures. Et ce, génération après génération, pendant des durées démesurées à l’échelle des sociétés humaines.

Outre les difficultés éthiques de cette solution, celle-ci consisterait en un pari sur la pérennité de la civilisation humaine moderne, sa survie aux crises nationales ou mondiales d’origines humaines ou naturelles. Une telle stratégie, portée sur le le long terme, a longtemps été unanimement reconnue, en France, comme inacceptable par le public, les mouvements écologistes, politiques, ainsi que par l’industrie. C’est à la fin des années 2010 que cette unanimité s’est ébréchée, mais nous y reviendrons.

Dans la quête d’une stratégie alternative, plus enviable, la solution proposée par la communauté scientifique fut de remplacer ces infrastructures temporaires par une enveloppe géologique naturelle, qui existe et existera sans nécessiter aucune maintenance, et sans besoin d’être renouvelée.

Le stockage géologique

C’est le principe de stockage géologique, qui prévoit de stocker les déchets dans des formations rocheuses choisies pour leurs capacités à confiner efficacement et durablement les substances radioactives. Et « durablement » au sens géologique, pas au sens de l’industrie.

Le principe de stockage géologique fait l’objet d’un consensus scientifique mondial et, en France, un projet de mise en œuvre commence à être bien consolidé, sur le papier et en laboratoire (lequel est implanté dans la formation géologique profonde destinée à recevoir nos déchets à vie longue).

Il s’agit d’une solution non pas provisoire mais définitive, et qui, en ne nécessitant ni maintenance ni surveillance à terme, évite de léguer aux générations futures la gestion de nos déchets radioactifs.

L’alternative au stockage géologique

Deux paragraphes plus haut, j’évoque un consensus scientifique mondial en faveur du stockage géologique. Quelques paragraphes plus haut, je disais également qu’en France, il y avait autrefois consensus de société sur le caractère inacceptable d’une stratégie qui consisterait à pérenniser la gestion actuelle, à base d’infrastructures provisoires à reconstruire périodiquement.

Cependant, ce second consensus s’est aujourd’hui effondré ; et alors que le stockage géologique est chaque jour un peu plus proche de devenir une réalité, les opposants historiques au nucléaire ont été contraints à adapter leur discours pour pouvoir demeurer dans une démarche d’opposition.

Aujourd’hui, ils font explicitement la promotion d’une stratégie alternative qu’ils appellent généralement « stockage/entreposage en sub-surface ».

Nos demandes sur les déchets nucléaires : renoncer au projet d’enfouissement profond Cigéo et privilégier d’autres options, comme le stockage à sec en sub-surface pour permettre aux générations futures de surveiller et d’accéder aux déchets radioactifs. […]

Greenpeace France, 2019

EELV rappelle qu’une autre voie que l’enfouissement est à privilégier : l’entreposage en sub surface à proximité des sites de production nucléaire, qui diminuerait les risques, notamment sur les questions de transports.

Europe Écologie – Les Verts, 2015

La plupart des pays nucléarisés ont choisi l’option de l’entreposage à sec des combustibles irradiés après séjour en piscine. […] notre pays persiste dans une fuite en avant nucléaire : le projet de stockage définitif CIGEO dont la sûreté et la gestion sont constamment remises en question […] Il est plus que temps de revenir à la raison, et d’arrêter toute forme de retraitement des combustibles usés. C’est également préserver l’avenir, que de laisser aux générations futures la possibilité de mette au point des techniques d’élimination […].

La France Insoumise, 2019

Le premier commentaire que je ferai porte sur l’emploi, indifférent, des termes d’entreposage et de stockage, car cette confusion est lourde de sens. Lorsqu’il s’agit de déchets radioactifs, l’article L542-1-1 du Code de l’environnement fixe les définitions suivantes :

  • L’entreposage consiste à placer les substances radioactives à titre temporaire dans une installation spécialement aménagée en surface ou à faible profondeur, avec intention de les retirer ultérieurement.
  • Le stockage consister à placer ces mêmes substances dans une installation spécialement aménagée pour les conserver de façon potentiellement définitive, sans intention de les retirer ultérieurement.

Or, pour les déchets à vie longue, le stockage en surface ou sub-surface n’existe pas, car, compte tenu des durées en jeu pour ces déchets, de telles infrastructures ne peuvent pas être considérées comme définitives.

La stratégie alternative qu’ils mettent en avant est donc celle d’un entreposage, en surface comme actuellement, ou en sub-surface (c’est à dire à très faible profondeur, sans jamais en justifier la pertinence).

Cette stratégie implique d’adapter légèrement la stratégie actuelle, en réalisant des infrastructures conçues non plus pour quelques décennies mais pour un à trois siècles… Puis de les renouveler, tous les quelques siècles. En assurant une maintenance et une surveillance continue, et une manipulation périodique des déchets pour les désentreposer, reconditionner, réentreposer.

Et ce, dans l’espoir qu’une solution alternative, pérenne, soit un jour trouvée… Tout en excluant le stockage géologique et quasiment toutes les solutions de transmutation, car celles-ci nécessitent, pour la plupart, de pérenniser la filière nucléaire avec de nouveaux réacteurs avancés et nouveaux procédés de traitement du combustible nucléaire. Ainsi, par opposition au stockage géologique, ils ne proposent rien moins que de prolonger la stratégie provisoire actuelle, potentiellement sur des dizaines de milliers d’années, en comptant sur la pérennité de la société humaine moderne et sans considération des coûts et responsabilités reportées sur les générations futures.

Afin de pérenniser leur opposition au nucléaire, ils sont dans l’obligation de pérenniser le problème des déchets, et donc de militer en faveur d’une solution de gestion qu’ils considéraient autrefois, aux côtés des scientifiques, du public et des industriels, comme inacceptables.

Désintégration : radioactivité et fission

Les questions qui m’ont été adressées proviennent d’une confusion entre deux phénomènes ayant lieu à l’échelle du noyau de l’atome (noyau → « nucléaire », par étymologie). La désintégration radioactive, et la fission nucléaire. Et ce sera également l’occasion de parler de transmutation.

La désintégration radioactive

Types de rayonnements

La désintégration est un phénomène spontané, c’est à dire qu’il n’a pas besoin d’être provoqué, il se déroule sans initiateur et de manière aléatoire dans les noyaux des atomes dits « radioactifs » (ce qui signifie… « qui sont susceptible de se désintégrer spontanément », justement).

Le noyau d’un atome, c’est un agrégat de deux types de particules, les neutrons et les protons. Les uns et les autres affichent une masse quasiment identique, mais le proton est électriquement chargé (sensible à un champ électrique, donc), tandis que le neutron est… neutre.

©IN2P3

Lors d’une désintégration radioactive, la modification est subtile. Un cas typique est celui d’un neutron qui se transforme en un proton, ce qui implique un changement de charge électrique… Compensé par l’éjection d’un électron : une particule beaucoup plus petite et légère, mais de charge opposée à celle du proton. Cette émission d’électrons est ce qu’on appelle le rayonnement β- (lisez « bêta moins »), qu’on raccourcit souvent par β, en oubliant le « moins » (parce que, certes, il existe un rayonnement β+, mais dans de rares cas de figure, donc la pratique conduit à souvent assimiler « β- » à « β »).

Il existe une autre forme de radioactivité assez courante, c’est le rayonnement α (« alpha »). Dans ce cas, le noyau initial se voit arracher un fragment comportant deux protons et deux neutrons, ce qui correspond au noyau de l’atome d’hélium.

©IN2P3

Énergie des rayonnements

Dans un cas comme dans l’autre, le phénomène libère une petite quantité d’énergie. Celle-ci se trouve sous la forme d’énergie cinétique, donc, en fait, de vitesse de la ou des particule(s) éjectée(s). Cette énergie, bien qu’importante à l’échelle d’une particule, est infime à l’échelle des quantités d’énergie que nous sommes habitués à manipuler au quotidien. C’est pourquoi aucune de nos unités habituelles, le (kilo)wattheure, le Joule, n’est appropriée. On comptera plutôt en « électrons-volt », notés eV, ou « mégaélectrons-volts », notés MeV, qu’il n’est pas question d’expliquer ici. Retenez simplement qu’il s’agit d’une unité de mesure de l’énergie (pour les curieux : 1 MeV ≈ 0.2 millionième de millionième de Joule).

L’énergie libérée par la radioactivité α ou β, exprimée en MeV, donc, varie selon l’atome initial qui s’est désintégré.

Pour le plutonium 238 par exemple, dont la désintégration s’accompagne d’un rayonnement α, on est à 6 MeV par particule α émise. Cet exemple n’est pas innocent : c’est cette énergie, de désintégration du plutonium 238, que l’on met à profit pour produire de la chaleur et, au final, de l’électricité, dans les « Générateurs Thermoélectriques à Radioisotope » qui équipent plusieurs missions d’exploration spatiale à la surface de Mars (Curiosity, Perseverance) et vers les objets plus lointains du système solaire (Voyager, Cassini-Huygens…).

Autre exemple, l’iode 131. Celui-ci est le radionucléide le plus redouté en cas d’accident de réacteur nucléaire, à l’origine de nombreux cancers de la thyroïde au Bélarus, en Ukraine et en Russie après la catastrophe de Tchernobyl. Avec lui, on a un rayonnement β d’énergie un peu inférieure à 1 MeV.

Dernier exemple, le tritium (ou hydrogène 3), dont on parle énormément dans le cadre des futurs rejets des eaux contaminées de Fukushima-Daiichi. On est encore sur un rayonnement β, mais dont l’énergie est d’à peine 0,02 MeV.

Mesure de la radioactivité

La radioactivité d’un matériau radioactif donné est donc liée au matériau en question, et est caractérisée par le type de rayonnement et l’énergie des particules émises. Mais ce n’est pas tout : pour mesurer la radioactivité, on va s’intéresser avant tout au nombre de désintégrations par seconde.

Alors, certes, j’ai dit que le phénomène de désintégration était spontané et aléatoire, ce qui laisse penser qu’il n’y a pas de régularité. Mais… Mais si, en fait.

À l’échelle d’UN atome radioactif, disons de carbone 14, on sait qu’elle va avoir lieu, mais on ne sait pas prédire à quel moment. C’est à ce titre qu’elle est aléatoire : elle peut survenir à tout moment, mais l’atome peut aussi rester du carbone 14 pendant des dizaines de milliers d’années avant de se désintégrer. Bien entendu, moins l’atome est stable, moins on devrait attendre avant de voir une désintégration.

Seulement, voilà, on regarde assez rarement un seul atome. Le moindre milligramme de carbone 14 contient quarante milliards de milliards d’atomes radioactifs. À l’échelle d’un si grand échantillon, la désintégration se met à suivre certaines règles. Si l’on ne sait dire quels atomes dans le lot se désintègreront ) quel instant, on sait dire que le nombre totale d’atomes de carbone 14 va diminuer exponentiellement, comme ceci.

Après un certain temps, environ 5700 ans, on aura vu se désintégrer la moitié de notre milligramme de carbone 14. Encore 5700 ans plus tard, il ne restera plus qu’un quart de l’échantillon initial. Puis, après encore 5700 ans, plus que le huitième, etc.

Si l’on sait dire comment évolue notre échantillon de carbone 14 avec le temps, cela veut dire que l’on sait à quelle vitesse il se désintègre ou, autrement dit, combien de désintégration par secondes y ont lieu à chaque instant.

La désintégration par seconde, c’est l’unité de mesure de la « quantité » de radioactivité ; on appelle ça un Becquerel, noté « Bq », du nom du bonhomme ayant découvert le phénomène.

Ainsi, notre milligramme de carbone 14, il s’y produit 150 millions de désintégrations par seconde. On dira qu’il présente une activité de 150 MBq (mégabecquerels). Évidemment, au fur et à mesure que notre quantité de carbone 14 diminuera, sa radioactivité diminuera aussi : après 5700 ans, il ne s’y produira plus que 75 millions de désintégrations par seconde ; autrement dit, son activité aura diminué à 75 MBq. Cette durée est ce qu’on appelle la « période », ou « demi-vie » du carbone 14.

C’est par cette logique que l’on peut dater le carbone issu de tissus vivants : le taux de carbone 14 par rapport au carbone total, est fixe tant que l’organisme est vivant, puis, après la mort de l’organisme, il diminue selon cette logique. Donc si l’on regarde le taux de carbone 14 d’un tissu aujourd’hui, on peut remonter plusieurs millénaires jusqu’à la date de sa mort – aux imprécisions près.

Radioactivité appliquée au combustible nucléaire

On a parlé d’iode, de plutonium, de carbone, de tritium, mais l’idée de ce billet, c’est d’appliquer tout ça à l’énergie nucléaire ! Alors, allons(y.

Dans une tonne d’uranium enrichi, soit 955 kg d’uranium 238 et 45 kg d’uranium 235, il se produit quinze milliards de désintégrations d’atomes d’uranium par seconde (15 GBq). Cela représente une perte de 6 picogrammes d’uranium, toujours par seconde, autrement dit, 0,2 milligrammes par an. Avec environ 4 MeV par désintégration, on obtient une production d’énergie de… 10 mW. Oui, dix milliwatts, de chaleur, à partir d’une tonne d’uranium. Pour comparaison, la chaleur libérée par un corps humain au repos est dix mille fois supérieure.

Ce n’est donc pas ce phénomène que l’on peut espérer utiliser en réacteur.

Ce n’est pas la radioactivité de l’uranium qui le consomme (enfin, à raison de 0,2 milligrammes par an, sur une tonne…) ni qui produit la chaleur. C’est le second phénomène que nous devons discuter…

La fission nucléaire

Là, tout de suite, il n’est plus question de transformations subtiles du noyau, pas de proton qui se transforme en neutron, pas d’émissions de minuscules électrons… Et ce n’est pas non plus un phénomène spontané (sauf à la marge).

Conditions d’obtention

S’il existe énormément d’atomes radioactifs différents, bien plus que d’atomes non-radioactifs en fait, les atomes qui peuvent fissionner sont moins nombreux. Et dans la nature, ils sont très peu nombreux. En fait ils sont au nombre de… Un. L’uranium 235. Mais on sait également en synthétiser à assez grande échelle : le plutonium 239 et l’uranium 233 (respectivement produit par transmutation -on y reviendra- à partir de l’uranium 238 et du thorium 232, que l’on dit non pas « fissiles » mais « fertiles »).

Bien. Pour la fission, il nous faut donc un atome fissile. Généralement de l’uranium 235. Et, je le disais, elle n’est pas spontanée : elle est induite, il faut un déclencheur, et le déclencheur est généralement un neutron qui se balade librement et qui vient percuter le noyau fissile. C’est la collision entre le noyau fissile et le neutron qui provoque la fission.

Phénomène de fission

Et la fission, c’est quoi ? C’est très simple : c’est l’éclatement du noyau fissile en deux fragments, de natures chimiques variées, et de tailles/masses variables mais relativement proches.

©IN2P3

Et en plus de ces deux fragments que l’on appellera « produits de fission », la fission va libérer quelques neutrons solitaires qui vont à leur tour pouvoir provoquer de nouvelles fissions : c’est la réaction en chaîne. En moyenne, 2,2 neutrons par fission pour l’uranium 235.

©GSI

Et parfois, un troisième produit de fission est libéré, beaucoup plus petit que les deux autres, et toujours le même : du tritium.

La réaction en chaîne de fissions a deux qualités notables. La première, c’est que c’est un phénomène induit et non spontané ; et si on le provoque, cela veut dire qu’on peut espérer le contrôler, réguler la vitesse de la réaction en chaîne. Et la seconde qualité, c’est l’énergie libérée à chaque fois : 200 MeV ! Un noyau d’uranium 235 qui fissionne, c’est 43 fois plus d’énergie que s’il se désintégrait. Et dans un réacteur nucléaire, on va faire fissionner l’uranium beaucoup, beaucoup plus vite qu’il ne se désintègre.

Fission appliquée au combustible nucléaire

En moyenne, dans un réacteur nucléaire, au sein d’une tonne d’uranium (soit, pour rappel, 45 kg d’uranium 235 et 955 kg d’uranium 238), on va faire fissionner une douzaine de kilogrammes d’uranium 235 par an. Pour atteindre cette consommation, c’est un milliard de milliards de fissions par seconde qu’il faut entretenir ! Oui, les quinze milliards de désintégrations par seconde que l’on avait par simple radioactivité sont loin…

L’uranium 235 se consomme donc par fission à un rythme de 0,4 milligrammes par seconde pour une tonne d’uranium initial -que l’on comparera aux 0,2 milligrammes par an perdus du fait de la radioactivité- pour une puissance libérée de 30 MW (mégawatts). On saute donc neuf ordres de grandeur par rapport aux 10 mW (milliwatts) provenant de la radioactivité.

Récapitulatif : radioactivité | fission

Iconographie

À l’exception du portrait d’Henri Becquerel, toutes les images de ce billet proviennent du merveilleux site laradioactivite.com.

Et la transmutation, alors ?

Il existe une troisième forme de transformation, induite elle aussi, que peut subir la matière nucléaire.

Comme la fission, elle passe généralement par l’absorption d’un neutron… Mais sans induire de fission ensuite. Le neutron reste absorbé, soit parce que la fission n’est pas toujours garantie, même pour les noyaux fissiles, soit parce que le noyau qui l’a absorbé n’était pas fissile.

Et l’on change ainsi la nature nucléaire de l’atome : du cobalt 59 (le cobalt naturel, stable) on passe au cobalt 60 (radioactif), par exemple.

Il s’agit souvent d’une réaction parasite, dont on se dispenserait bien. L’exemple ci-dessus l’illustre bien. Certains aciers utilisés en construction ou en métallurgie, y compris nucléaire, comportent du cobalt, dont la seule forme stable existante dans la nature est le cobalt 59. Exposé à un flux de neutron, comme celui s’échappant du cœur d’un réacteur nucléaire, le cobalt 59 transmute en cobalt 60, radioactif et même assez fortement irradiant. C’est un des plus gros gêneurs dans le démantèlement nucléaire, et c’est lui, avec sa demi-vie de seulement 5 ans, qui incite à différer le démantèlement de quelques décennies (stratégie en vigueur dans de nombreux pays, dont la France jusqu’en 2006 où le démantèlement immédiat est devenu la stratégie de référence).

Mais la transmutation peut également être utilement mise à profit. On a levé ce voile précédemment en mentionnant les atomes « fertiles ». L’uranium 238 est 140 fois plus abondant, dans la nature, que l’uranium 235. Et le thorium 232 est encore 3 fois plus abondant. Mais ils ne sont pas fissiles… En revanche, en les exposant à un flux de neutrons, on peut « fertiliser » ces noyaux « fertiles » pour les transformer en plutonium 239 et uranium 233, l’un et l’autre fissiles. Et nous voilà à créer de la matière fissile !

La transmutation offre d’autres possibilités, comme la fabrication de radionucléides très spécifiques à usage médical.

Certains font également la promesse de mettre ce phénomène à profit pour réduire les quantités de déchets radioactifs à gérer. C’est un peu ce qu’on fait en transformant l’uranium 238 (un peu inutile) en plutonium (fissile), mais l’on pourrait également envisager de transformer certains produits de fission aux demi-vie trop longues en produits de fission à vie courte. Par exemple, l’iode 129 est un des produits de fission les plus dérangeants dans la gestion à long terme des déchets radioactifs ; d’une part en raison de sa demi-vie de seize millions d’années, et d’autre part en raison de sa grande mobilité dans l’eau et la roche : à ce titre, il fait l’objet d’une attention renforcée dans la conception du stockage géologique.

En revanche, en transmutant l’iode 129 en iode 130, ce dernier ayant une demi-vie de quelques heures, on règlerait rapidement le problème : il suffirait de le laisser reposer quelques jours pour se retrouver avec une bonbonne de xénon stable. Évidemment, la mise en œuvre est bien plus complexe que ça.

Et les rayonnements gamma, alors ?

Dans cet article, vous aurez entendu parler de rayonnements α et β… Mais les rayons γ (« gamma »), pourtant bien connus, seraient passés à la trappe ?

En fait, le rayonnement γ réside en une émissions de photon, les particules sans masse ni charge électrique lesquelles, selon leur fréquence (croissante ci-après), sont appelées onde radio, micro-ondes, infrarouges, lumière, ultraviolets, rayons X ou rayons γ.

De fait, si l’on n’émet qu’un photon, on n’a pas transformation de matière, juste une libération d’énergie pure. Or, dans cet article, nous avons décrit différentes transformations ayant lieu au niveau du noyau atomique : désintégration, fission, transmutation…

Mais sachez que souvent, ces réactions produisent des atomes surexcités, qui vont éliminer leur trop-plein d’énergie par émission d’un photo… γ, bien souvent.

Si l’on en revient au cobalt 60, il va généralement se désintégrer en nickel 60 excité en émettant un rayonnement β de faible énergie (0,3 MeV). Mais le noyau de nickel 60 va ensuite se désexciter en émettant successivement deux particules γ, de 1,2 et 1,3 MeV chacune. Ça sera toujours du nickel 60, car pas de transformation du noyau, mais pour les personnels affectés au démantèlement, ce seront ces photons γ, le problème, pas le rayonnement β.

La Pierre Jaune, Pt. V.

Retrouvez aux liens ci-après les première, deuxième, troisième et enfin quatrième partie de cette série. Nous continuons à commenter le script de cette vidéo :

Quand on parle de ce sujet, on nous accuse souvent de donner des idées aux terroristes.

Je ne pense pas que ce soit un reproche pertinent, en effet. Une des missions, sans doute la mission fondamentale, des acteurs de la protection contre les malveillances en tout genre, c’est de toute façon d’anticiper les idées que pourraient avoir des terroristes.

Mais en fait, les terroristes ne nous ont pas attendu pour avoir ces idées : la preuve, en 2011, quand les Américains sont allés tuer Oussama Ben Laden à Abbottabad au Pakistan, ils ont dans la foulée publié une série de documents qu’ils ont trouvé dans l’ordinateur du cerveau des attentats du 11 septembre. Dans ces documents, il avait deux rapports sur le nucléaire en France, dont l’un était signé justement par l’expert allemand qui a alerté sur la faille de l’usine nucléaire de la Hague.

Selon cet article, les documents en question, qui ont été retrouvés au domicile du célèbre terroriste, étaient le rapport Nuclear France Abroad de 2009 et de France on Radio­active Waste Management de 2008, deux documents de Mycle Schneider, le militant antinucléaire mentionné dans le précédent billet et de ses proches (WISE-Paris, etc.).

Ce sont des rapports publics, synthétisant des informations publiques, sans focus particulier sur la sécurité et la protection contre la malveillance. Il va de soi que si ces documents comportaient des informations compromettantes pour la sécurité nationale, Mycle Schneider et les siens seraient derrière les barreaux. Donc avoir retrouvés ces documents à Abbottabad indique que Ben Laden et ses équipes s’étaient intéressés au nucléaire français… Et c’est tout. Il n’est pas permis d’en déduire si une attaque était envisagée, ni laquelle.

Mais, effectivement, ils s’y étaient au moins intéressés, et donc on ne peut pas reprocher aux militants antinucléaires d’aborder le sujet. En revanche, on peut leur reprocher d’en dire n’importe quoi.

Ça peut paraître dingue que l’État français sache qu’un attentat de cette ampleur ou un accident seraient possible sur l’une de ces installations nucléaires et qu’il ne fasse rien.

Et c’est un bon exemple de n’importe quoi, justement. Ce qui fait plaisir, c’est que le journaliste-auteur ne fait pas comme s’il découvrait quelque chose de notoirement connu, il a conscience que ce qu’il raconte est connu, au moins des autorités.

Mais il considère que rien n’est fait en réponse à ce risque. Est-ce :

  • parce qu’il n’a pas cherché à savoir ce qui était fait, donc en a déduit que rien n’était fait ?
  • parce que les trois idées qu’il a eu ou qu’on lui a suggéré n’ont pas été retenues qu’il en a déduit qu’aucune autre idée n’avait pu être mise en œuvre ?
  • parce qu’il n’a pas trouvé ce qui était fait qu’il en a déduit que rien n’était fait ?

En fait, le problème du nucléaire c’est qu’il est né dans le secret, il s’est construit dans le secret… Le problème c’est que ce secret n’existe pas : on peut trouver toutes les informations qu’il nous faut, elles existent déjà sur Internet ou dans les journaux. L’État, lui, se drape dans cette croyance, qui est fausse, selon laquelle le secret le protège encore.

Là, on tombe dans un paradoxe typique… Des complotistes. Vous savez, ces gens persuadés de toutes leurs forces de grandes magouilles pour dissimuler la vérité au monde entier… Tout en étant convaincus qu’il « suffit de faire ses propres recherches » pour trouver la vérité ? Ceux qui pensent trouver sur Youtube des démonstrations qui échappent aux esprits les plus brillants de ce monde ?

Ici, nous sommes dans cette même configuration, mais inversée : parce qu’il trouve des informations sur internet, le journaliste-auteur considère que rien n’est secret. Sans envisager que les secrets sur lesquels repose vraiment la protection puissent être… secrets. Et donc hors de sa portée.

Pourtant, les élus ayant participé en 2018 à la Commission d’Enquête sur la sûreté et la sécurité des installations nucléaires l’ont bien constaté : ne parvenant à se faire habiliter Confidentiel ou Secret Défense, ils n’ont pu consulter certaines informations techniques sur la protection des installations nucléaires contre les malveillances… Et notamment des piscines d’entreposage de combustible vis-à-vis d’un projectile (avion, missile…).

Oui, l’industrie nucléaire a des origines militaires et donc est née dans le secret. Et si aujourd’hui les activités militaires et civiles sont bien séparées, si la transparence est devenue la norme en matière de sûreté… La protection contre les menaces de nature militaire (terrorisme, notamment) reste, elle, dans le secret. Et que ce journaliste ait échoué à accéder aux informations tenues secrètes devrait l’inciter à penser que le secret est bien protégé, et non pas que ces informations… N’existent pas.

Je pense qu’il n’y a qu’une catastrophe qui pourra nous faire prendre conscience du problème. Et je préfère qu’elle arrive d’abord en fiction pour tenter de nous faire prendre conscience de cet énorme talon d’Achille, plutôt qu’elle arrive en vrai. Même si, malheureusement, il faut souvent attendre les vraies catastrophes pour avoir des vraies prise de conscience.

A deux doigts de souhaiter une catastrophe pour pouvoir dire « Ha, j’avais raison ». Heureusement qu’il ne s’agit que d’un livre… Ça serait grave de le présenter comme un journaliste d’investigation.

La boucle est bouclée.

La Pierre Jaune, Pt. IV.

Retrouvez aux liens ci-après les première, deuxième et troisième partie de cette série. Nous continuons à commenter le script de cette vidéo :

En cas d’accident nucléaire sur l’usine de la Hague, certains spécialistes estiment qu’entre 25 et 40% de l’Europe pourraient ne plus être habitables. Il faut prendre ces chiffres avec des pincettes, mais disons que cette hypothèse nous montre à quel point on a une épée de Damoclès gigantesque au-dessus de la tête.

Cela va être vite vu… Qui sont les spécialistes en question, quel est le critère pour dire que le territoire est rendu inhabitable ?

Oui, prenons ces chiffres avec ces pincettes et faute de source et d’explication, jetons les prudemment dans la plus proche poubelle. Et donc écartons cette hypothèse et l’épée de Damoclès impliquée.

Dans mon livre j’imagine qu’un avion tombe sur la piscine D de l’usine nucléaire de la Hague parce que cette hypothèse a été au centre des débats. Finalement l’État français avait reconnu que, au bas mot, une telle catastrophe serait au moins équivalente à sept fois Tchernobyl.

Au centre des débats, mais de quels débats ? En matière de sûreté nucléaire, tout a été tôt ou tard au centre d’un débat donné.

En revanche, il est semble-t-il vain de trouver trace de « l’État français » qui viendrait cautionner cette affirmation. Dans ce vieil article du même auteur, auquel nous serons amenés à faire plusieurs références, il est seulement question du Ministre de l’Environnement en exercice à l’époque des attentats du 11 septembre, le Vert Yves Cochet, qui affirmait que « si un avion tombe sur les piscines de La Hague, avec les vents d’ouest qui ramènent toujours tout sur l’Ile-de-France, vous comme moi nous ne serons plus là pour en parler ». Ce sont des propos qui engagent Yves Cochet tout au plus, ce n’est pas une reconnaissance au niveau de l’État qu’un tel scénario serait « au moins équivalent à sept fois Tchernobyl ».

Et d’abord, qu’est-ce que c’est censé vouloir dire, « 7 fois Tchernobyl » ? Le Tchernobyl n’est une unité de mesure reconnue dans aucun système d’unités dont j’ai connaissance. Est-ce 7 fois plus de cancers ? 7 fois plus d’évacués ? 7 fois plus de km² contaminés ? 7 fois plus de km² de territoire à évacuer ? 7 fois plus de réacteurs concernés ?

Je vous renvoie à la première partie de cette série d’articles, dans laquelle j’affirmais que, selon moi et au vu des méthodes marketing de la maison d’édition, « 7 fois Tchernobyl » n’est pas un argument, ni même une idée : seulement une punchline, un slogan pour vendre. Je maintiens ici cette affirmation…

Mais tentons donc de comprendre cette affirmation. Avec quelques mots clés adaptés, je pense que l’origine de cette affirmation remonte aux lendemains des attentats de 2001. Dans cette archive du Monde, on nous explique un calcul de WISE-Paris (Mycle Schneider, encore) selon lequel il y aurait un kilogramme ce Césium 137 par assemblage combustible, chiffre que je ne suis pas en mesure de réfuter ni vérifier mais qui ne me choque pas. Multiplié par la quantité de combustible alors entreposée à l’usine, et l’on arrive à 7,58 tonnes, soit 287 fois la quantité relâchée par l’accident de Tchernobyl. Si une des piscine remplie à la moitié de sa capacité était touchée par un avion, en supposant que 100% du césium 137 est relâché, on aboutit à un relargage de 1761 kg de césium, soit 66,7 fois Tchernobyl. Le mythe est né !

Sauf que dans le cas de Tchernobyl, un réacteur qui a littéralement explosé, 30 à 40% du césium contenu dans le cœur a été libéré. Il va de soi qu’en cas de chute d’un avion sur la Hague, le scénario serait bien moins dispersif, et donc qu’on ne peut décemment pas retenir cette hypothèse de 100% du césium relâché. Toujours dans l’article des Inrocks, du même auteur, précédemment cité, l’on explique que lorsque ce nombre de 66,7 a été publiée, la présidente d’AREVA, Anne Lauvergeon, était montée au créneau. Et que l’IRSN aurait produit une note selon laquelle seul 10% du césium serait, en toute vraisemblance, relâché. Et voilà notre facteur 6.7. Invérifiable, ceci dit…

Mais.

Est-il seulement pertinent ? Est-il d’une part pertinent de prendre la quantité de césium 137 comme indicateur, et d’autre part pertinent d’en faire un « fois Tchernobyl » ? Disons le franchement, cela revient à résumer Tchernobyl en quantité de césium. Pas en nombre de cancers, pas en nombre d’évacués, pas en km² contaminés ou évacués… Pas même en quantité de radioactivité, ni en potentiel de danger ! Le césium 137 est loin d’être le seul radionucléide relâché à Tchernobyl. Et s’il est le plus nocif à moyen et long terme – il contamine durablement et sur une très large distance l’environnement – il n’est même pas le plus délétère pour la santé humaine. La majorité des pathologies que l’on doit à Tchernobyl, on les doit à l’iode 131 – on en reparle plus loin.

Mais réalisez : la punchline au cœur de la campagne marketing, c’est basé sur une note confidentielle qui conteste un calcul de coin de table d’une association antinucléaire, qui est peu pertinent car considère un seul aspect, et à laquelle on fait dire ce qu’elle ne dit pas en transformant « x fois la quantité de césium relâchée à Tchernobyl » en « x fois Tchernobyl ». C’est pratique, chacun entendra ce qu’il aura le plus envie d’entendre.

Par contre, niveau éthique, sérieux… Ça se pose là.

Je me suis dit que la fiction allait nous permettre d’expérimenter la survie en territoire contaminé.

OUI.

C’est en effet à cela que peut servir une fiction. À se projet dans un scénario, réaliste, ou seulement crédible, ou totalement fantasmé. Il est même tout à fait possible d’écrire une fiction que l’on veut réaliste en y introduisant quelques éléments complètement surnaturels. Je ne serais pas surpris qu’existe, par exemple, des œuvres de science-fiction dans lesquelles on admet un élément complètement irréaliste (l’humanité se dote d’un moyen de propulsion dans l’espace qui s’affranchit du besoin d’énergie et de la limite de la vitesse de la lumière) et qui, en dehors de cet écart, se veut totalement réaliste.

Hélas, ce n’est pas dans cette démarche là qu’est l’édition Goutte d’Or. Il n’est pas question d’admettre quelque chose d’irréel et de dérouler une histoire ensuite, il est question de le justifier par tous les moyens possibles, quitte à réinventer non pas son récit, mais… La réalité.

Il y a notamment un spécialiste en radiations qui m’a beaucoup aidé.

Il semblerait de ses diverses interventions dans les médias que le « spécialiste en radiations » soit Mycle Schneider, un militant antinucléaire allemand (que l’on oubliera soigneusement de présenter comme militant). Dont je n’ai pas connaissance d’une spécialisation en radioprotection ; j’accuse ici, un peu gratuitement je l’admets, un argument d’autorité malhonnête. Sa fiche Wikipédia en anglais mentionne une participation à un groupe d’expert sur la non-prolifération, qui est un sujet bien différent.

S’il fallait partir de chez soi en catastrophe, il faudrait se protéger avec des casques de moto des moufles, n’avoir aucune partie du corps en contact avec l’extérieur, ou se calfeutrer.

C’est une possibilité. Dans un scénario d’accident avec des rejets importants de radioactivité sous forme d’aérosols (des petites particules solides ou liquides mais assez légères pour être emportés dans les gaz, dans le vent…), et de retombées de cette radioactivité, se protéger est une idée. Et en cas de déclenchement du Plan Particulier d’Intervention, deux familles de scénarios, pour les populations, sont à considérer.

Dans le plus souple, en cas notamment de rejets dont on sait qu’ils seront limités dans le temps, il s’agit de se calfeutrer, se confiner. Couper la ventilation de la maison, essayer d’isoler les aérations, et attendre. Le confinement va éviter que l’air ambiant de votre abri (maison, lieu de travail, établissement recevant du public…) ne se charge trop en radioactivité au passage du panache, et donc éviter que vous soyez trop contaminé, en surface ou en interne.

Dans un cas plus rude, une évacuation peut s’imposer. Et en pareil cas, oui, il me semble pertinent de se couvrir le plus possible. Ainsi, la contamination sera retenue par vos vêtements qu’il suffira de jeter une fois à l’abri (puis procéder à une décontamination complémentaire au besoin), ce qui est plus simple que de changer de peau si celle-ci se voit contaminée, vous en conviendrez. Rappelons toutefois que des vêtements sont une protection imparfaite : ils ne sont pas étanches, et ne protègent pas les voies respiratoires.

Néanmoins, j’admets volontiers que ces deux phrases sont pertinentes.

On ne pourrait plus boire l’eau du robinet, on ne pourrait plus boire l’eau qui tombe du ciel, on ne pourrait plus manger tous les aliments qui ont été en contact avec l’air…

Là encore, tout dépend des scénarios. Selon la nature et la quantité des rejets, des retombées, des infrastructures d’acheminement de l’eau…

Disons que dans un scénario extrême générique, sans se poser vraiment la question du « comment », l’affirmation se défend.

Et surtout, il faudrait savoir comment se décontaminer. Le premier réflexe c’est de se raser les cheveux, se raser les sourcils, se raser tous les poils du corps et prendre une longue douche. 

Je ne suis pas sûr que ce soit le « premier réflexe » à avoir, le fait de se confiner ou d’évacuer comme discuté précédemment arrivant beaucoup plus haut dans mon classement personnel.

Cependant, oui, en cas de contamination superficielle, les poils et cheveux peuvent retenir certains radioéléments, et une décontamination rapide et efficace peut demander de s’en défaire et de prendre une bonne douche.

Ensuite, il y a la contamination interne. C’est beaucoup plus compliqué car il y a beaucoup d’éléments radioactifs qui peuvent avoir été relâchés. Le Césium 137, lui, pour s’en débarrasser, il faudrait trouver du bleu de Prusse, ça se trouve en pharmacie, mais évidemment en cas de catastrophe il y aurait des pénuries. Vous l’ingérez, il va capturer le Césium dans votre corps et quand vous irez au toilette, vous l’évacuerez naturellement.

Je ne connais pas cette histoire de Bleu de Prusse, mais ça ne me choque pas, donc j’admets sans vérifier. En revanche, toute exposition au Césium 137 ne justifie pas nécessairement une telle mesure.

Le Césium 137 est un élément qui se désintègre spontanément en Baryum 137 en émettant un rayonnement β- de 500 keV d’énergie. Pour les différents types de rayonnements, je vous renvoie vers ce précédent billet. Quant à ce nombre de 500 keV, vous n’avez pas nécessairement besoin de le comprendre ; comprenez juste qu’il décrit l’intensité de la radiation émise. Ce Baryum 137 se stabilise ensuite en émettant quasiment instantanément un rayonnement γ de 700 keV d’énergie.

À titre de comparaison, le potassium 40, un élément radioactif naturellement présent dans l’organisme de nombreux êtres vivants (si ce n’est tous ? L’humain en fait en tout cas partie) se désintègre en émettant soit un rayonnement β- de 1300 keV, soit un rayonnement γ de 1500 keV. Et des désintégrations de potassium 40, cet isotope bien plus irradiant que le césium 137 donc, dans un corps humain adulte, il s’en produit 6000 à 8000 par seconde.

Vous comprendrez sans mal que si ce potassium 40 est inoffensif, il faut atteindre une certaine quantité de césium 137 pour commencer à présenter un danger, et donc dans notre scénario d’accident fictif, l’éliminer à l’aide de Bleu de Prusse n’est pas nécessairement un impératif ou une urgence sanitaire.

Pour ceux d’entre vous qui connaissent quelque peu les effets sanitaires des radiations, sachez que par ingestion de césium 137, le seuil de 100 mSv est atteint pour une incorporation de 0.91 GBq, 1.0 GBq et 0.77 GBq pour le nouveau-né, l’enfant de 5 ans et l’adulte, respectivement. Et par inhalation, respectivement 0.091 GBq, 0.14 GBq et 0.26 GBq.

Pour les autres, notez que des effets sanitaires sont à craindre uniquement en cas d’absorption d’une quantité assez conséquente de césium, et pas pour toute exposition au césium. Et que donc il n’y a pas besoin de bleu de prusse pour 25% de l’Europe (ni, vraisemblablement, 25% de la France).

Si vous êtes dans une zone qui devient contaminée, il faut prendre préventivement de l’Iode pour saturer sa thyroïde en Iode sain, ce qui va empêcher l’Iode radioactif qui va venir de s’y loger, car s’il s’y loge, après le risque de cancer est extrêmement élevé.

Aïe, aïe, aïe. Très grossière erreur… Ce qu’il affirme ici est vrai autour des centrales. J’explique tout ce que j’estime important à savoir sur la prise d’iode ici :

Mais il est nécessaire d’apporter une précision. La prise d’iode stable vise à protéger la thyroïde de l’iode 131 qui est produit dans un réacteur nucléaire lors de la fission (c’est un produit de fission) et qui est très volatil. Cependant, cet iode 131 a une demi-vie de 8 jours, c’est à dire que lorsqu’un réacteur s’arrête, la quantité d’iode 131 présente dans le combustible est réduite à 50% de sa valeur initiale après 8 jours, à 25% après 16 jours, à 12.5% après 24 jours, à 6.25% après un mois… À 0.1% après 10 fois la demi-vie, soit 80 jours.

Et le transport du combustible entre un réacteur nucléaire et la Hague il intervient au minimum après six mois, et en pratique après un an, voire deux. Six mois, c’est 23 fois la demi-vie de l’iode 131 : il reste 0.000012% de l’iode 131 après un tel délai.

Et à l’usine de la Hague, la très large majorité du combustible présent en piscine ne vient pas juste d’arriver mais est entreposé depuis des années. Un combustible qui refroidit, qui se « désactive » depuis 5 ans, c’est 2228 fois moins d’iode 131 qu’initialement : il y a probablement une teneur moins grande en iode 131 dans le combustible moyen à l’usine de la Hague que de substance active dans une préparation homéopathique.

À noter qu’il existe un autre isotope radioactif de l’iode dans le combustible usé, l’iode 129. Celui-ci a une demi-vie qui se compte en millions d’années, donc sa quantité n’a quasiment pas varié entre le moment où le combustible est sorti du cœur du réacteur et le moment où il est mis dans une piscine de l’usine de la Hague. Cependant, lorsque le réacteur est mis à l’arrêt, il y a environ cent millions de fois moins d’iode 129 que d’iode 131.

Une prise d’iode en cas d’accident à l’usine de la Hague n’est donc à priori pas justifiée, les rejets d’iode radioactif étant peu significatifs. D’ailleurs, dans le cadre des distributions préventives d’iode au voisinage des installations nucléaires, seules sont concernées les centrales EDF en production et quelques réacteurs de recherche, et pas l’usine de la Hague.

La grande problématique des cachets d’iode, c’est qu’ils ne durent que 24 heures. Des spécialistes essaient de trouver un Iode et des pastilles qui dureraient une semaine, mais pour l’instant on ne les a pas.

Je n’ai jamais entendu parler d’une efficacité limitée à 24h. Ayant une boîte de comprimés d’iode dans ma pharmacie, je lis la notice et je lis ceci ; « Le traitement consiste en une prise unique. Il ne doit être renouvelé que dans des cas exceptionnels, uniquement sur instruction des autorités compétentes. » Pas de contre-indication explicite donc, mais mon avis est qu’en cas de risque durable nécessitant de renouveler la prise d’iode, les scénarios de gestion de crise prévoient surtout une évacuation des populations menacées, qui ne sont donc pas supposées avoir besoin d’une deuxième prise, sauf cas particuliers.

Mais en effet, la distribution d’iode n’est pas pensée en faisant l’hypothèse que des réfractaires voudront demeurer sur place, comme c’est le cas dans ce roman, et qui auraient besoin d’iode stable comme traitement préventif de fond. Et je ne serais pas surpris par ailleurs qu’une prise régulière d’iode, même stable, soit délétère à court terme pour la thyroïde, rendant préférable la nocivité à long terme des radiations.

Quoi qu’il en soit, la question ne se pose même pas dans le cas qui nous intéresse ici, celui d’un accident nucléaire frappant l’usine de la Hague.

Plus qu’une dernière courte partie, et l’on sera venus à bout de cette vidéo.

La Pierre Jaune, Pt. III.

La première partie de cet article est à ce lien. La deuxième est à ce lien.
Ce qui suit est le script, commenté, de la vidéo de Konbini mentionnée dans le précédent billet et rappelée ci-dessous.

Il y a d’autres points faibles à l’usine nucléaire de la Hague. Il y a aussi les produits de fission, qui sont tous les déchets dont on sépare les combustibles des anciens cœurs de centrales. Ces produits sont extrêmement explosifs, tellement explosifs qu’on est obligé de les refroidir en permanence dans des cuves géantes. S’il y a des coupures d’électricité, ce qui est déjà arrivé, et que les générateurs de secours tombent en panne, ce qui est déjà arrivé, ça pourrait conduire à explosion et à des rejets massifs.

Dans le procédé de retraitement du combustible nucléaire mis en œuvre à l’usine de la Hague, le combustible est dans un premier temps cisaillé, puis dissout. Les solutions de dissolutions font l’objet d’un traitement chimique complexe pour en extraire les matières valorisables que sont l’uranium et le plutonium. À l’issue de ces étapes, les solutions ne sont plus qu’un concentré de substances radioactives non valorisables : les produits de fission. Les solutions feront l’objet d’ultimes traitements, et d’étapes de concentrations avant d’être vitrifiées pour produire les déchets à vie longue.

Ces solutions de produits de fission étant extrêmement radioactives, elles nécessitent de prendre en considération différents risques. Deux risques nous intéressent ici, il s’agit du risque de radiolyse, et du risque d’échauffement.

La radiolyse est la dissociation, sous l’effet des radiations, des molécules du solvant. Ce sont en particulier les atomes d’hydrogène qui ont tendance à se faire ainsi arracher aux atomes d’oxygène (dans l’eau) ou d’azote (dans l’acide nitrique). Atomes d’hydrogènes qui vont éventuellement se recombiner entre eux pour former du dihydrogène, un gaz qui, s’il s’accumule, induit un risque d’explosion. Ce ne sont pas les produits de fission à proprement parler qui sont donc explosifs, mais ils induisent un risque d’explosion par le dihydrogène qu’ils émettent par radiolyse. Pour maîtriser ce risque, la solution est plutôt rustique : injecter de l’air dans les équipements contenant des produits de fission. L’hydrogène va se diluer dans l’air, être drainé par la ventilation, et donc ne jamais s’accumuler jusqu’à des concentrations permettant son inflammation ou son explosion. Naturellement, des dispositions complémentaires viennent assurer la fiabilité de l’approvisionnement en air (redondances…), de la ventilation (tirage naturel…) et permettre de remédier à une perte d’approvisionnement en air de dilution. Mais il n’est pas sujet ici de reproduire une démonstration de sûreté, simplement d’expliciter le risque lié à l’hydrogène de radiolyse et indiquer qu’il est connu et pris en compte.

L’échauffement, quant à lui, est lié à la chaleur produite par les radiations. Les équipements contenant des produits de fission doivent être refroidis pour maintenir leur température à un niveau stable, avant tout pour éviter que les solutions n’entrent en ébullition. Car un tel phénomène conduirait au passage de nombreux produits de fission à l’état gazeux (ou aérosols) qui seraient alors emportés par la ventilation des équipements, conduisant à des rejets radioactifs excessifs dans l’environnement. Dans un scénario plus extrême, si l’ébullition produit davantage de gaz que la ventilation ne peut en extraire, les équipements peuvent être amenés à monter en pression, jusqu’à, éventuellement, leur rupture. Enfin, dans certains cas, une élévation de température peut conduire à des réactions chimiques indésirables. Comme l’air de dilution de l’hydrogène, le refroidissement fait l’objet de mesures de fiabilisation, de surveillance, et de remédiation en cas de défaillance.

Ce que vous aurez probablement constaté, c’est que je distingue d’une part l’explosivité liée à l’hydrogène, d’autre part la question du refroidissement. Parce que, de mes recherches, ne ressort aucune étape du procédé, concernant les produits de fission, dans lequel on refroidirait pour éviter une explosion. Selon moi, l’affirmation « Ces produits sont extrêmement explosifs, tellement explosifs qu’on est obligé de les refroidir en permanence dans des cuves géantes » ne repose sur rien.

Un twittos habile a suggéré une explication me semblant vraisemblable. Il avait souvenir d’articles de presse datés de 2017, qu’un autre twittos a retrouvés, sur un incident déclaré à l’usine de la Hague : une élévation de température dans une cuve de produits de fission à cause d’un problème de brassage. On est assez loin du scénario décrit dans l’interview dont nous parlons, mais on n’a pas plus proche. Sinon, encore un autre twittos a suggéré que le journaliste-auteur a pu simplement mélanger « ébullition » et « explosion », mais c’est une hypothèse peu charitable.

Cependant, l’avis d’incident sur le site de l’ASN, mentionne un risque de précipitation chimique (formation d’agglomérats de matière solide) en fond de cuve en cas de perte du brassage. La conséquence éventuelle serait alors que, localement, au niveau de ce précipité, la température pourrait augmenter jusqu’à perforer le fond de la cuve et provoquer sa vidange. Cependant, ce scénario était lointain, la température étant restée à 24 °C, loin du seuil d’alerte de 50 °C, et encore plus loin de températures dangereuses pour le métal de la cuve. Et, quand bien même, le risque aurait été celui d’un déversement de produits de fission dans le local où est implantée la cuve, pas d’explosion.

Enfin, signalons que la cuve dont il est question contenait des produits de fission issus du retraitement de combustibles anciens, ceux des réacteurs graphite-gaz (UNGG) dont le dernier a été arrêté en 1994. La vitrification des dernières solutions de produits de fission de combustibles UNGG s’est achevée en fin 2020.

Non, il me semble vraiment difficile d’exclure l’hypothèse que Geoffrey Le Guilcher affabule totalement, concernant cette histoire de produits de fission.

Et ça ne s’améliore pas dans la quatrième partie…

La Pierre Jaune, Pt. II.

La première partie de cet article est à ce lien. Ce qui suit est le script, commenté, de la vidéo de Konbini mentionnée dans le précédent billet et rappelée ci-dessous.

La plupart de mes sources sont en lien hypertexte au fil du texte. Petite parenthèse sur une autre source :

Pour les sujets relevant de la sûreté nucléaire concernant spécifiquement le site de la Hague, je me suis appuyé sur des documents mis à disposition du public lors d’enquêtes publiques concernant des modifications réglementaires des installations. Par nature de ces documents, les informations qu’ils contiennent sont publiques. Cependant, entre deux enquêtes publiques, les documents ne sont pas laissés à disposition du public. Il me semblait les avoir trouvés, fut un temps, sur le site de l’ASN, mais pas moyen de retrouver sur quelle page. Je les avais enregistrés en local, mais donc ne m’autoriserai pas à les diffuser. Ce sont donc des sources que, j’en ai conscience, vous ne pourrez pas vérifier, mais si un point ou un autre vous semble nettement contestable, faites moi signe, et nous chercherons éventuellement une source publique à l’appui de mes affirmations. Enfin, je me suis notablement appuyé sur mes connaissances de cours et expériences professionnelles quant à la sûreté nucléaire donc en ces cas… Pas de source externe, mais même chose : si besoin, on peut creuser. Bonne lecture !

En cas d’attentat sur l’usine nucléaire de la Hague, l’État français a admis que les conséquences pourraient être, au bas mot, au moins 7 fois pires que Tchernobyl. On ne pourrait plus boire l’eau du robinet, on ne pourrait plus boire l’eau qui tombe du ciel… Le premier réflexe c’est de se raser les cheveux, se raser les sourcils et tous les poils du corps. 

Ces affirmations reviennent à deux reprises dans la vidéo. Nous en discuterons à la deuxième occurrence, lorsqu’elles seront davantage contextualisées, expliquées, justifiées.

L’usine nucléaire de la Hague stocke une quantité de combustibles irradiés absolument phénoménale et on y trouve de tout : de l’uranium, du plutonium, des produits de fission…

Un vocabulaire rigoureux voudrait que l’on dise « entrepose » et non pas « stocke », mais c’est un détail, ici. Pour rappel, la nuance, inscrite dans la réglementation française, réside dans la durée : l’entreposage est temporaire, le stockage est définitif. L’usine de la Hague n’abrite aucune installation de stockage ; en revanche, attenant à l’usine, l’ANDRA (Agence nationale pour la gestion des déchets radioactifs) assure la surveillance d’un site de stockage de déchets de faible et moyenne activité à vie courte. Mais pour revenir à l’usine Orano, y sont effectivement entreposés uranium, plutonium et produits de fission. Ce sont là les trois principales familles de constituants du combustible usé, et le procédé de cette usine consiste justement à les séparer pour récupérer d’une part les matières valorisées (plutonium) ou valorisables (uranium) et, d’autre part, les déchets. Ces trois constituants sont donc nécessairement présentes en quantités variables dans l’usine, soient entremêlées au sein du combustible en attente de retraitement, soit séparées à l’issue du procédé de retraitement. Et à différentes étapes intermédiaires en cours de traitement.

Bref, jusque là, c’est bon.

La grande faille de cette usine nucléaire, ce sont ses quatre piscines. Dans chacune de ces piscines, il y a des anciens cœurs de réacteurs de centrales nucléaires qui sont en train de refroidir et on estime qu’il y a 2000 tonnes dans chaque piscine de combustible irradié.

En effet, avant retraitement, le combustible usé (c’est à dire, qui épuisé son potentiel énergétique en réacteur) est entreposé dans les piscines de l’usine. Entre 3 et 5 ans en général (auxquels on ajoute préalablement 1 à 2 ans dans les piscines des centrales nucléaires), et bien davantage pour le combustible MOX usé qu’aujourd’hui, on ne retraite pas (et donc qu’on entrepose en attendant de décider de le retraiter ou non).

Il y a effectivement quatre piscines d’entreposage de combustible dans le périmètre de l’usine de la Hague, nommées NPH, Piscine C, Piscine D et Piscine E. Avec près de 10 000 tonnes de combustible entreposées en fin 2016 (9 778 au 31 décembre), l’on serait à une moyenne de 2500 tonnes par piscine. Cette petite mise à jour du nombre est sans implication.

Un simple toit de tôle comme celui d’un hangar pour fruits et légumes les protège. Si un avion tombe sur l’une de ces piscines, le vrai danger c’est qu’il n’y ait plus d’eau autour des combustibles. Un incendie gigantesque pourrait se déclencher et à ce moment-là les éléments radioactifs qui pourraient être relâchés dans l’atmosphère seraient colossaux.

Dans un tel hangar, la tôle a pour but de protéger des intempéries avant tout : pluie, vent, et détritus (d’origine végétale, insecte, animale…). En revanche, il est vrai que des tôles n’assurent pas de fonction structurelle, ou de manière très limitée. Cette fonction est donc reprise par le treillis de poutre soutenant les tôles, la structure de la piscine. Treillis qui est clairement visible dans la vidéo.

Un ancien employé de la Hague préconisait de construire une cathédrale de béton. Il faut étudier ces solutions, essayer de remédier à ce point faible.

En effet, l’on comprendra sans mal que même ce réseau de poutres n’assure qu’une protection limitée contre les agressions, et qu’une tornade ou qu’un projectile massif pourrait en venir à bout. Et face à ce risque, la « bunkerisation », l’enfermement des piscines sous une épaisse coque en béton armé, est une réponse possible. C’est d’ailleurs l’une des réponses qui a été retenue pour une future nouvelle piscine, actuellement à l’étude par EDF.

Effectivement, étudier les vulnérabilités, les risques et leurs conséquences, et chercher à y remédier est une nécessité, et une démarche continue, notamment dans le cadre des rééxamens périodiques de sûreté. En revanche, que la solution de bunkeriser à posteriori n’ait pas été retenue n’implique pas que le risque n’est pas maîtrisé.

Encore faudrait-il caractériser le risque, car vis-à-vis de la chute d’un projectile, un matelas d’eau de quatre mètres d’épaisseur a des propriétés de freinage absolument considérables. Notons également que si les parois aériennes et le toit de la piscine sont en poutres et tôles, les parois du bassin sont autrement plus épaisses et complexes, car naturellement, l’éventualité d’une brèche, peu importe qu’elle soit inopinée ou provoquée par une agression humaine ou naturelle, a toujours été dans les esprits.

Ainsi, il appartient à l’IRSN (Institut de radioprotection et de sûreté nucléaire) et à l’ASN (Autorité de sûreté nucléaire) de challenger Orano sur la tenue des piscines à un accident d’origine interne ou externe ; et il appartient au HFDS (Haut fonctionnaire de défense et de sécurité) et au SGDSN (Secrétariat général de la défense et de la sécurité nationale) de challenger l’industriel sur sa prise en compte des risques de malveillance. Et de prendre ou faire prendre des mesures si nécessaire, ce qui ne semble pas s’imposer à l’heure actuelle, en témoigne l’extrait ci-dessous du Rapport fait au nom de de la Commission d’Enquête sur la sûreté et la sécurité des installations nucléaires (2018).

« L’ensemble de ces mesures semble rendre les installations nucléaires françaises robustes face au risque terroriste :

  • une bonne anticipation. Comme l’indique M. Pascal Bolot, directeur de la protection et de la sécurité de l’État, la directive nationale de sécurité pour le secteur nucléaire traite de l’ensemble des menaces aujourd’hui concevables : « la menace externe liée à des tirs extérieurs, courbes ou directs, vers des centrales nucléaires ; les intrusions malveillantes, qu’elles soient le fait d’ONG ou d’autres organisations (…) ; les menaces internes enfin (…), les menaces cyber« . Cette analyse de la menace est actualisée deux fois par an.
  • des moyens humains significatifs. Aux 1 000 gendarmes des PSPG, s’ajoutent « le personnel de sécurité d’EDF, plus le personnel sous-traitant de sécurité d’EDF, soit des sociétés privées de sécurité, plus des personnes recrutées pour assurer le filtrage à l’entrée et le personnel de sécurité spécialisé d’Orano et du CEA. Cela représente un investissement collectif qui est loin d’être négligeable. » Environ 4 000 personnes se consacreraient à la protection des centrales nucléaires. Toujours selon M. Pascal Bolot, « en comparaison avec d’autres pays, nous sommes, en proportion du nombre de centrales nucléaires, dans le haut du spectre« .
  • des exercices réguliers. Comme l’indique Mme. Régine Engström, « nous menons également une politique d’exercices de sécurité de grande envergure (…). Nous émettons ensuite des recommandations adressées aux opérateurs et dont nous assurons le suivi. Les exercices peuvent servir à orienter la stratégie de réponse à la gestion de crise, orienter les contrôle en inspection, pointer les sujets qui nécessitent des réflexions approfondies ».

Mme. Régine Engström insiste « sur le fait que l’AIEA avait jugé, dès 2011, que le dispositif de de sécurité nucléaire français était solide. Une nouvelle mission de cet organisme, sollicitée par le Président de la République, s’est déroulée du 12 au 28 mars 2018, conduite par neuf experts internationaux désignés par l’Agence. Elle vient de confirmer que le dispositif de sécurité nucléaire français était ‘bien établi et robuste’ « . Enfin, selon M. Nicolas Hulot, ministre d’État, ministre de la transition écologique et solidaire, « si l’on en croit les missions internationales qui viennent évaluer de temps en temps nos propres dispositifs, il faut objectivement reconnaître que nous sommes plutôt bien dotés, mais cela ne signifie pas, dans ce domaine comme dans beaucoup d’autres, que le risque est totalement maîtrisé« . »

Vous l’aurez lu ici. Selon Barbara Pompili (auteure du rapport dont il est question ici) et Nicolas Hulot, deux ministres de l’écologie, tour à tour, et anti-nucléaires notoires, la sécurité des installations nucléaires françaises n’est pas un sujet d’alerte, simplement de veille et d’amélioration continue.

Et, pour conclure sur cette partie, vous aurez noté que, si Geoffrey Le Guilcher a raison d’affirmer que « Il faut étudier ces solutions, essayer de remédier à ce point faible », l’organisation de la sûreté et de la sécurité nucléaires en France ne l’ont pas attendu pour y penser.

On se retrouve dans une troisième partie pour la suite de l’interview…

Déchets #7 Il y a plus de déchets radioactifs en France que ce que dit l’inventaire officiel, selon l’Autorité de sûreté nucléaire

Tout un dossier sur les nouveautés sur l’uranium appauvri, cette matière nucléaire que l’ASN demande à reclasser en déchets.

Pourquoi ?

Quelles implications ?

Est-ce que Greenpeace France avait début depuis le raison ?

https://lenergeek.com/2020/10/16/trois-cent-mille-tonnes-de-dechets-radioactifs-dissimules-par-lindustrie-tribune/

Un grand merci à L’Energeek pour avoir publié ce que je leur ai proposé ! !