[Politique] Pourquoi le nucléaire n’est pas un détail…

Il ne se passe pas un jour cette semaine sans que l’on ne m’interroge sur le caractère potentiellement excessif de l’importance que j’accorde à la question du nucléaire et de l’énergie en politique. Plus concrètement, on me demande ou me reproche de m’arrêter à cette seule problématique, le nucléaire et l’énergie, et de ne pas voir les formidables programmes écologiques et sociaux des candidats Jadot et Mélenchon derrière cet arbre atomique.

J’ai décidé de prendre le temps d’expliciter ces raisons. En concentrant le propos autour de Jean-Luc Mélenchon, puisqu’il prédomine dans les sondages d’intentions de vote. D’expliquer pourquoi fermer les yeux sur ce détail du nucléaire ne serait pas un renoncement, mais un sacrifice.

Alors ? Sachant qu’aucun « ne va sortir du nucléaire du jour au lendemain », pourquoi ne puis-je accepter une concession là-dessus au profit des grandes causes sociales et écologistes ?

I. Le discours

J’écris ce billet avec l’intention de tourner autour du pot en me rapprochant progressivement de l’élément central de mon propos. Ce premier point n’est donc pas l’élément fondamental, mais il mérite d’être mentionné.

Yannick Jadot comme Jean-Luc Mélenchon, à chaque fois, durant cette campagne, la campagne précédente, et les cinq longues années entre les deux, qu’ils évoquaient la question nucléaire, n’ont su que mentir. Sans honte. Et je ne parle pas de possibles erreurs ou maladresses, lesquelles auront sans doute été fréquentes, mais bien de mensonge. De propos répétés d’interview en meeting et de meeting en tweet, largement contredits parfois même par les service de vérification de l’information de différents médias, mais répétés de nouveau, encore, et encore. Des affirmations identifiées et reconnues comme trompeuses par les spécialistes ou les médias, mais identifiées comme populaire dans l’électorat par les équipes de campagne, alors, pourquoi se priver…

Certains de ces mensonges sont de vieux leitmotivs de la cause antinucléaire. « On ne sait pas gérer les déchets », « les centrales tombent en ruine », « le nucléaire coûte trop cher », etc. Mais il y a eu de vraies innovations, qui répondent à la définition que je propose au paragraphe précédent. En particulier de la part de Mélenchon.

On citera notamment les 12 millions d’habitants à évacuer en cas d’accident à la centrale de Nogent-sur-Seine. « S’il arrive quoi que ce soit », comme si une centrale était une bombe thermonucléaire prête à détoner à la moindre perturbation. 12 millions de personnes touchées, un score que même Greenpeace n’ose avancer.

On citera aussi les 150 milliards d’euros du Grand carénage, le grand plan d’investissement d’EDF dans la maintenance des centrales nucléaires qui s’étend sur la période 2015-2030, que l’équipe de campagne de Mélenchon a justifiés en incluant l’exploitation en plus de la maintenance (pourquoi pas, la Cour des comptes le fait aussi) et en ajoutant, comme une invention à posteriori pour maquiller le mensonge, le coût de construction de nouveaux réacteurs. Ce qui ne fait évidemment pas partie du Grand carénage.

On citera encore les indémodables 40 ans d’âge des centrales nucléaires établi comme un maximum pour lequel elles auraient été conçues.

On citera enfin (non pas que la liste soit exhaustive, mais il est temps de l’interrompre) l’affirmation selon laquelle aucun laboratoire en France ne travaille à la recherche sur la gestion des déchets radioactifs ; affirmation largement moquée le 17 octobre et réitérée le 3 janvier, mais dont je ne trouve trace hormis ces dates et les commentaires sur Twitter.

Des affirmations fausses, débunkées, répétées : des mensonges, nous parlons donc de candidats qui n’ont aucun scrupule à désinformer et mentir sur ce sujet pourtant sensible.

Enfin, il y a cette rhétorique de la terreur, chère aux extrêmes, à laquelle Mélenchon cède sans sourciller. « Un seul coup au but, et la France serait mortellement touchée », ce n’était pas assez apocalyptique. Non, maintenant, c’est toute l’Europe qui est en péril, si ce n’est le monde entier. C’est évidemment faux, mais surtout, ça relève d’un discours populiste de ceux qui suscitent les peurs et tentent de fructifier sur ce terreau : une méthode infecte.

II. Le programme… de 2021

Ah, oui. Nous sommes plusieurs observateurs à avoir relevé qu’entre le Mélenchon de 2021, jusqu’à la fin de l’automne, basé sur le programme, l’Avenir en Commun avant sa mise à jour sur cette campagne ; le Mélenchon de 2022 et le programme de Mélenchon en 2022, il y a trois discours différents. C’est déjà motif de circonspection, mais voyons ces propos de plus près. Je le rappelle, on va se rapprocher peu à peu du cœur de mon propos ; corollaire : nous n’y sommes pas encore.

Outre les contre-vérités dont quelques exemples viennent d’être vus, le programme nucléaire de Jean-Luc Mélenchon – et celui de Yannick Jadot, dirais-je – en 2021 était d’une absurdité insensée.

À cette époque, le discours était plutôt simple :

  • On ferme les réacteurs à leurs 40 ans et on arrête la construction de l’EPR de Flamanville.
  • Corollaire : on ne dépense pas l’argent du Grand carénage pour cela (150 milliards d’euros selon lui, 75 milliards d’euros selon la Cour des comptes auxquels s’ajoutent 25 milliards d’euros de dépenses d’exploitation durant la période de prolongation) et on l’utilise au profit des énergies renouvelables.
  • On applique le scénario de transition énergétique « négaWatt » pour sortir du nucléaire en 2035 et des fossiles en 2050

II.1. L’EPR

Parlons juste d’argent, à son sujet.

Les antinucléaires considèrent que les 19 milliards d’euros qu’il aura coûté à terme l’ont été aux dépens du contribuable (alors que, là encore, c’est le client d’EDF – et ses banquiers – qui payent) et qu’il est grand temps de mettre fin à cette gabegie. Ok, on ne récupèrera pas l’argent, mais on arrêtera de vider les caisses de l’État dans ce gouffre.

Sauf que… C’est bien EDF et ses créanciers qui ont fait cette dépense. Les uns et les autres risquent de vouloir récupérer leur mise si un gouvernement interdit de force la concrétisation de l’investissement. Comme lors de la fermeture de Fessenheim, pour laquelle EDF a bénéficié d’un dédommagement par l’État pour la perte de l’outil industriel, sa valeur et sa rentabilité future potentielle.

Dans le cas de l’EPR, si les 19 milliards n’ont pas été payés par le contribuable, en cas d’abandon, ils pourraient bien l’être au final. Et, dans ce cas, sans perspective aucune de retour sur investissement.

C’est sans doute très vendeur, pour un candidat qui se veut écologiste, d’annoncer qu’il abandonnera ce projet. C’est dommage d’oublier d’évoquer ce risque pour le budget de l’État.

II.2. 40 ans, pas plus

Bon, cette histoire de 40 ans maximum, plus besoin d’y revenir, elle est fausse. Mais concrètement, arrêter les réacteurs à 40 ans, ça se traduit comment pour le système électrique ?

Voici le parc nucléaire français, exprimé en mégawatts, historique et à venir avec une fermeture des réacteurs au terme de leur quarantième année après leur mise en service commercial.

D’un état initial à 63 100 MW, il faudrait descendre, dès l’année de l’élection, à 46 000 MW. Un quart du parc nucléaire à supprimer. À la fin du mandat, resteraient 21 300 MW. Un parc réduit de deux tiers. En 2035 ne subsisteraient plus que 6 000 MW, 10% du parc. La sortie du nucléaire ne serait alors plus qu’une formalité.

Par contre, c’est profondément infernal. Une transition aussi rapide, qui n’est pas sans rappeler celle prévue par la Belgique (où 7 réacteurs nucléaires couvrant 60% de la production d’électricité du pays devaient fermer brutalement en 2025), implique nécessairement le recours massif aux importations d’électricité et de gaz, ainsi qu’à la construction des centrales ad hoc, et donc un renoncement total à la question climatique. Un peu embarrassant pour un candidat qui se propose en champion de l’écologie… Encore plus alors que la fin 2021 était marquée par une crise en Europe avec une envolée du prix de l’énergie et en particulier du gaz. Et il est évidemment impensable de miser sur un développement des énergies renouvelables et du stockage dans cette temporalité.

Je le dis autrement : la fermeture du parc nucléaire à 40 ans d’âge impliquait, dans le meilleur des cas, un renoncement à l’objectif de neutralité carbone et l’acceptation d’une hausse très marquée des émissions nationales de gaz à effet de serre. Et dans le pire des cas, celui où l’on n’aurait su prévoir et mettre en œuvre les approvisionnement en électricité et en gaz et les centrales à gaz nécessaires, ce programme impliquait un effondrement du système électrique française et une crise économique et sociale digne de la seconde guerre mondiale.

Allez nous parler de faire passer le programme social et écologiste devant, sachant cela…

Mais bon. C’était 2021. Autre âge.

II.3. Le Grand carénage

Une manne de 150 milliards d’euros ! Que l’on pourrait réaffecter aux énergies renouvelables ; rendez-vous compte !

Non. L’investissement en question est financé par EDF, ou plutôt par la dette d’EDF, et doit être couvert par la rente de la vente d’électricité durant les dix à vingt années supplémentaires de production des réacteurs.

Comptons qu’un parc nucléaire de 60 000 MW qui produit durant dix années supplémentaires avec un facteur de charge de 70% et un prix de vente moyen de l’électricité à 42 €/MWh (entre les tarifs régulés, les prix de marché, l’ARENH… C’est une hypothèse qui en vaut une autre), le chiffre d’affaire résultant est de 155 milliards d’euros. Poussez à 20 ans, c’est le double. Bon, au-delà de ces calculs de coin de table, il est largement admis que la prolongation de réacteurs nucléaire est une opération extrêmement rentable. C’est même le moyen le plus économique de produire de l’électricité bas-carbone

Par contre, si l’on ne prolonge pas les réacteurs, cette rente future n’existe plus, donc l’argent du Grand carénage n’existe plus. Donc il ne faut pas escompter le réorienter vers d’autres secteurs.

Les calculs ne sont pas bons…

Mais bon. C’était 2021. Autre âge.

II.4. NégaWatt 2017

2017, oui… C’est la date de la dernière mise à jour du scénario négaWatt. Plutôt bienvenu pour la campagne de 2017, mais ses conditions initiales étaient 2015… Or, en fin 2021-2022, faire campagne sur la base d’un rapport qui se base sur l’année 2015, c’est délicat. Évidemment, la partie [2015-2022] du scénario négaWatt ne s’est pas réalisée, et ça a des répercussions sur toute la suite.

Ainsi, dans les milieux informés, il était de notoriété publique que le scénario négaWatt allait être mis à jour en 2021 ou 2022. Et il était donc évident que La France Insoumise et Jean-Luc Mélenchon tenaient un discours incohérent, irréaliste et obsolète.

Et, ce que je tiens pour un grave manque de sérieux, Mélenchon et son équipe de campagne n’en savaient rien et ont été surpris par l’annonce d’un nouveau scénario à la mi-octobre 2021. Ils ont aussitôt annoncé caler leur programme dessus, mais cela a valu à Mélenchon d’être confronté à ses contradictions sur le nucléaire, le calendrier de sortie glissant de 2035 à 2045.

Le point positif, c’est qu’avec le changement de scénario, Mélenchon garde un objectif de sortie des fossiles en 2050 mais la sortie du nucléaire n’est plus 15 ans en avance, trahissant un certain sens des priorités. Le point négatif, c’est que Mélenchon a voulu garder la face en annonçant qu’il ferait, autant que possible, en sorte de sortir du nucléaire plus tôt que prévu dans ce scénario.

J’avais fixé un objectif de 2030. Je ne veux pas de blocage sur les dates. Mais je prends l’engagement de tout faire pour aller plus vite que le scénario 2045.

à France Inter

Ce qui traduit un sens des priorités qui n’a pas changé…

Mais bon. C’était 2021. Autre âge.

M’enfin, ça fait beaucoup d’incompétence, d’omissions et d’ambiguïté, tout ça.

III. Le programme… de 2022

Même si certains mensonges sont restés fermement accrochés (cf. § I), sur le calendrier de sortie du nucléaire, Jean-Luc Mélenchon a dû mettre de l’eau dans son vin. Pour ce qui est du scénario négaWatt comme référence, si de nombreux militants – peut-être même Mélenchon lui-même – continuent à l’invoquer, dans la pratique, ça s’est singulièrement compliqué : à l’heure où j’écris ces lignes, à 34h de l’ouverture des bureaux de vote, à deux heures de la trêve électorale, le scénario négaWatt 2022, annoncé en octobre, n’est pas encore paru.

Ainsi, si l’on considère ce scénario comme le programme de transition énergétique de Jean-Luc Mélenchon, alors l’on peut en déduire que ce dernier part au premier tour sans programme de transition énergétique. Ce qui est quelque peu embarrassant pour le candidat champion de l’écologie.

Son équipe de campagne, pas folle, indique que leur programme est donc basé sur le scénario M0 de RTE, dans sa variante « sobriété ». Sortie du nucléaire en 2050. Mais… Il me semble que jamais Mélenchon n’a mentionné ces scénarios, à se demander s’il en a connaissance. Un exemple de décalage entre le discours de Mélenchon, le discours de son entourage, et les programmes de La France Insoumise, et de « l’Avenir en commun », ces derniers ne mentionnant aucune trajectoire.

Pas de programme de transition énergétique, donc.

Il ne serait plus à présent question que de planifier la sortie progressive du nucléaire au fur et à mesure de la montée en capacité des énergies renouvelables.

Alors le grand écart avec le Jean-Luc Mélenchon est sévère. D’un arrêt de tous les réacteurs à 40 ans et abandon du Grand carénage, soudainement, on prolonge les réacteurs et on sort progressivement du nucléaire. Évidemment, ça implique de mener le Grand carénage à son terme (ou de prolonger les réacteurs sans maintenance et sans salaire pour les employés). Et de reconnaître que les cent mille répétitions de la limite maximale de 40 ans étaient toutes trompeuses.

Toutefois, ça n’a pas l’air de le déranger de parler de sortie progressive et de menace existentielle pour la nation, l’Europe et le monde entier. La rhétorique de la terreur… Par intermittence.

En revanche, avec cette idée de prolongation, je ne parle que de contradiction entre « Mélenchon fin 2021 » et « Mélenchon début 2022 ».

Cependant, même sans faire de comparaison entre deux temps… « planifier la sortie progressive du nucléaire au fur et à mesure de la montée en capacité des énergies renouvelables ». Vous l’avez ?

Les deux idées sont contradictoires. On ne peut pas prétendre planifier quoi que cela si l’on se prépare à adapter, au jour le jour, le calendrier de sortie du nucléaire en fonction des progrès des énergies renouvelables. C’est bête, mais j’ai le sentiment que pas grand monde n’a percuté sur cette contradiction. Le petit résidu de programme de transition énergétique, lequel tient en trois ou quatre phrases, parvient à être incohérent.

Pourtant, planifier, c’est important. Surtout en matière d’énergie, où les infrastructures mettent des décennies à s’ériger pour ensuite fonctionner un demi-siècle au bas mot. Et encore plus en matière d’énergie nucléaire car, dans ce domaine plus que tout autre, tout se planifie au temps long, souvent séculaire (10 ans d’études, 10 ans de chantier, 60 ans de service, 20 ans de démantèlement… On y est). Mais Jean-Luc Mélenchon ira au premier tour sans aucune planification de l’énergie et du nucléaire.

IV. Le péril électronucléaire

En surface, tout ceci révèle un sérieux manque… de sérieux.

Par contre, sous la surface, ça se complique. Nous rentrons à présent dans le cœur du sujet.

Le parc nucléaire français vieillit, c’est un fait. Nous l’avons vu précédemment, si nous devions envisager un arrêt des réacteurs à 40 ans, nous perdrions les deux tiers du parc en un mandat. Cependant, aujourd’hui, grâce au Grand carénage, le scénario de référence est le suivant :

  • Porter à 50 ans d’âge les 32 réacteurs de 900 MW, de conception globalement plus ancienne
  • Porter à 60 ans d’âge les 24 réacteurs de 1300 et 1500 MW

C’est un scénario qui se veut réaliste, sans être trop pessimiste, ni trop optimiste (lorsque l’on parle d’aller au-delà de 60 ans, on rentre clairement dans un optimisme hasardeux aujourd’hui).

Scinder ainsi le parc en deux permet également de lisser la chute, et non pas seulement la repousser. Et donc évite d’exiger à « ce qui viendra après » de se développer aussi abruptement que le parc nucléaire actuel dans les années 80.

Se pose évidemment la question de ce que l’on met après. Les scénarios « M » de RTE, avec ou sans sobriété, avec ou sans réindustrialisation, ouvrent la perspective de faire sans nucléaire. Cependant, au prix d’efforts très importants sur le déploiement de l’éolien terrestre et en mer, du solaire photovoltaïque en parcs et en toitures, d’investissements lourds dans le réseau électrique (notamment les interconnexions aux frontières), de contraintes de flexibilité sur les usagers qui s’ajoutent à celles de la sobriété… Le tout, sous condition d’actions lourdes, très rapides.

Pour des investissements plus élevés, avec davantage de risque d’échec, et un impact environnemental sensiblement supérieur, par rapport aux scénarios « N », qui proposent le même objectif de neutralité carbone en 2050 mais avec un renouvellement plus ou moins important du parc nucléaire.

Privilégier les scénarios M aux scénarios N est un choix qui se défend et se respecte. Mais qui a un prix et fixe des impératifs qui n’ont pas été abordés par Jean-Luc Mélenchon dans sa campagne ni inscrits dans son programme ; des incertitudes, des surcoûts et des contraintes qu’il n’a pas eu l’honnêteté d’exposer à son électorat.

Jean-Luc Mélenchon se contente généralement d’en appeler aux cerveaux du pays, aux ingénieurs et aux chercheurs, aux nouvelles technologies de l’énergie, celle de la pente qui descent, les panneaux luminescents de Montparnasse, les hydrolienne et l’énergie houlomotrice. Rien de cela ne s’inscrit dans la réalité, dans la temporalité et dans l’ampleur de l’enjeu.

La temporalité et l’enjeu…

RTE, dans ses scénarios « N », indique qu’il est encore temps, bien qu’urgent, de lancer la construction de nouveaux réacteurs nucléaires, lesquels seront amenés à prendre le relais d’une partie du parc actuel lorsque les réacteurs correspondants seront en fin de vie.

Cela pourrait donner une transition de ce genre là (dans ce graphe, le calendrier de construction de nouveaux réacteurs est dans la limite haute de ce que considère RTE).

On note que l’on va vers un fort déficit dans les décennies 2030 et 2040, pendant lesquelles RTE compte sur les énergies renouvelables et les interconnexions pour compenser, malgré la hausse prévisible de la consommation d’électricité.

Maintenant, imaginons que Jean-Luc Mélenchon soit élu, qu’il ne touche pas à ce calendrier de fermeture du parc actuel (malgré ses discours volontaristes et alarmistes) ni au chantier d’EPR à Flamanville, mais gèle les perspectives de construction de nouveaux réacteurs en misant sur « la recherche » pour proposer une alternative, et sur les énergies renouvelables pour lesquelles il n’affiche pas une ambition digne du scénario M0.

L’industrie nucléaire, qui se prépare à remonter en puissance, après avoir payé le prix fort (à Flamanville) le réapprentissage de la construction de réacteurs, devrait stopper son élan. Sans perspective, les personnels ayant acquis de la compétence sur les chantiers de Flamanville, Olkiluoto, Taishan et Hinkley Point C s’en iraient vers d’autres horizons. Les filières de formation, des lycées professionnels aux écoles d’ingénieurs, resombreraient dans le déclin et fermeraient probablement assez rapidement.

Les alertes répétées, depuis des années, sur la sécurité d’approvisionnement et le réseau électrique deviendraient de plus en plus pressantes : système électrique en fin de vie, ambition modeste de renouvellement des infrastructures et de déploiement des énergies renouvelables, pas de renouvellement du parc nucléaire. Une chute vers la pénurie d’énergie.

Imaginons qu’en 2027, au terme du mandat, l’on reparle de renouveler le parc nucléaire. Mais alors, ce ne sont pas cinq années qui auront été perdues, mais, avec la déliquescence de la filière nucléaire, des formations aux compétences actives, ce seront dix, quinze années ? Il serait impossible de rattraper le coup.

V. Quelle issue ?

Quelles seraient nos options pour éviter l’effondrement du système électrique à l’horizon 2050 pour avoir, en 2022, élu un candidat sans programme de transition énergétique, qui ne prévoit que de faire de la recherche et planifier, des années en retard ?

V.1. L’option heureuse

On s’approche du miracle, mais l’option heureuse consisterait à avoir réussi à se mettre, d’ici là, dans la configuration d’un des scénarios M de RTE. Et ce en ayant pris du retard sur la période 2020-2027. Des progrès technologies majeurs dans les réseaux et infrastructures de stockage, un changement radical de l’opinion publique qui se met à demander des éoliennes et centrales solaires partout…

Est-ce là votre pari ? Voter pour un candidat qui annonce une sortie aussi rapide du nucléaire que possible et ne prend pas au sérieux les enjeux identifiés par RTE pour remplacer le nucléaire, en espérant d’une part, un quasi-miracle et, d’autre part, qu’il ne tienne pas ses promesses sur le nucléaire en permettant un prolongement aussi longtemps que possible et, enfin, qu’il parvienne à répondre aux enjeux (ou, du moins, à ne pas faire prendre un retard irrattrapable) sur les énergies renouvelables, la sobriété, la flexibilité ?

Avez-vous seulement conscience que c’est un pari extrêmement incertain qui, même s’il devait s’avérer gagnant, aboutirait à une trajectoire elle-même fortement incertaine (le scénario M0 étant le plus délicat de ceux produits par RTE) ? Et qui, s’il devait être perdu, amènerait à l’une des options suivantes ?

V.2. L’option pragmatique

Sur un modèle belge, allemand, ou cohérent avec les anciens scénarios de Greenpeace, Sortir du nucléaire, négaWatt, peut-être également EELV : recours en urgence aux énergies fossiles pour combler le creux entre la fin du parc nucléaire actuel et le jour où les énergies renouvelables seront matures.

Nous en revenons au paragraphe II.2. de ce texte. Un renoncement aux ambitions climatiques de la France, pour avoir voulu prendre le risque d’un champion de l’écologie, nonobstant le « détail très secondaire du nucléaire ».

Au-delà de la problématique climatique, mentionnons également les autres complications liées aux ressources fossiles : leur raréfaction, et la dépendance qu’elle engendre à certaines puissances peu fréquentables. Dépendance laquelle est, n’en déplaise aux rumeurs, sans commune mesure avec la dépendance aux importations d’uranium, cette dernière devant plutôt être mise sur le même plan que la dépendance aux autres métaux nécessaires à la transition énergétique : cuivre, zinc, nickel, fer…

V.3. L’option surprise

S’il devenait, dans ce futur hypothétique de 2027, encore plus évident qu’aujourd’hui qu’un renouvellement du parc nucléaire s’impose, le retard pris pourrait être en partie compensé par la prolongation des réacteurs.

Par exemple :

Aujourd’hui, la prolongation de certains réacteurs au-delà de leur soixantième année est considérée comme une forte incertitude du scénario N03 de RTE. Dans le cas que je présente ci-dessus, je prolonge tous les réacteurs à 70 ans et ne fais que limiter le déficit de capacité, sans le supprimer.

Cette option, pour être levée, pourrait nécessiter des renoncements sur l’ambition française en matière de sûreté nucléaire. Dit autrement : on accepterait un fonctionnement des réacteurs malgré une sûreté inférieure à nos exigences standard pour éviter la pénurie.

Un potentiel recul en matière de sûreté nucléaire avec des réacteurs maintenus en service plus longtemps que normalement acceptable, pour avoir voulu prendre le risque d’un champion de l’écologie ayant vendu une parti de son programme sur le rejet de la menace nucléaire.

V.4. L’option noire

Il est également envisageable que les espoirs énoncés au V.1. ne se concrétisent pas, que l’on se refuse à construire un parc de centrales à gaz ou que l’on ne puisse s’approvisionner autant que nécessaire en gaz, et que l’on aie fermé les réacteurs en enterrant toute possibilité de les prolonger, même dans des conditions de sûreté dégradées.

Auquel cas, c’est une pénurie d’énergie que la France affronterait, avec des conséquences que très peu de personnes savent appréhender. Mais dans un monde où il devient plus que jamais difficile de se chauffer et se déplacer, où seuls les nantis dotés de groupes électrogènes conservent le confort de l’électricité l’hiver, il y a fort à parier que les ambitions écologiques et de progrès sociales qui justifièrent un certain choix en 2022 ne soient plus qu’un lointain souvenir

VI. Conclusion

Ce texte, infiniment trop long, vise à expliquer pourquoi, selon moi, le discours écologiste sur le nucléaire peut très difficilement être relégué au second plan pour justifier un vote pour ces candidats. Le choix du renoncement à la problématique nucléaire est le choix du report à plus tard de problèmes majeurs, un sacrifice plus qu’un renoncement, différé dans le temps pour se donner bonne conscience face à un candidat :

  • menteur,
  • populiste qui joue sur la peur,
  • dans la défiance des expertises techniques et scientifiques,
  • incohérent,
  • sans programme de transition énergétique.

Si vous êtes arrivé jusque là, je vous en suis reconnaissant, que votre opinion ait changé ou non. Quelle que soit votre arbitrage final sur ce sujet, j’espère avoir fait tout ce qui était en mon pouvoir pour qu’il soit aussi éclairé que possible…

Déchets #9 L’Histoire du stockage géologique en France

Dans cet article, dont vous retrouverez la version thread Twitter ci-après, je vous propose une petite rétrospective maison du processus réglementaire et scientifique de la gestion des déchets radioactifs aujourd’hui dédiés au stockage géologique : ceux de haute activité ainsi que ceux de moyenne activité à vie longue. Pourquoi ? Parce que les politiques, décennies après décennie, n’ont eu vocation qu’à repousser la prise de décision, comme vous allez pouvoir le constater, et donc nourrir la fausse idée selon laquelle on ne saurait « pas gérer les déchets radioactifs »…

1991

Le Parlement demande au CEA, au CNRS et à l’ANDRA d’étudier diverses solutions pour gérer au long terme les déchets les plus radioactifs. La feuille de route leur donne 15 ans pour rendre leur copie. On se référera à ce point de départ comme la « Loi Bataille », et Alexis a quelques anecdotes à son sujet.

L’article 4 de cette loi est celui qui nous intéresse ici.

« Le Gouvernement adresse chaque année au Parlement un rapport faisant état de l’avancée des recherches sur la gestion des déchets radioactifs à haute activité et à vie longue et des travaux qui sont menés simultanément pour :

  • la recherche de solutions permettant la transmutation des éléments radioactifs à vie longue présents dans ces déchets ;
  • l’étude des possibilités de stockage réversible ou irréversible dans les formations géologiques profondes, notamment grâce à la réalisation de laboratoires souterrains ;
  • l’étude de procédés de conditionnement et d’entreposage de longue durée en surface de ces déchets.

Ce rapport fait également état des recherches et des réalisations effectuées à l’étranger.

À l’issue d’une période qui ne pourra excéder quinze ans à compter de la promulgation de la présente loi, le Gouvernement adressera au Parlement un rapport global d’évaluation accompagné d’un projet de loi autorisant, le cas échéant, la création d’un centre de stockage des déchets radioactifs à haute activité et à vie longue et fixant le régime des servitudes et des sujétions afférentes à ce centre.

Le Parlement saisit de ces rapports l’Office parlementaire d’évaluation des choix scientifiques et technologiques. »

Ainsi, lors de ce point zéro, il était bien question d’étudier différentes alternatives et, si le stockage géologique devait ressortir comme l’option la plus crédible, se préparer dès 2006 à la création d’un centre de stockage. Notons également qu’il était déjà alors question d’éventuelle réversibilité du stockage géologique.

Toujours 1991

La DSIN, qui deviendra plus tard l’ASN, édicte la « Règle fondamentale de sûreté » (RFS) III.2.f qui définit les objectifs à retenir pour le stockage définitif des déchets radioactifs en formation géologique profonde.

2005

L’ANDRA, l’Agence nationale pour la gestion des matières et déchets radioactifs, remet le « Dossier argile ». Celui-ci prétend aboutir à la conclusion qu’un stockage de déchets radioactifs dans la couche argileuse où le laboratoire est déjà implanté est faisable.

Ce dossier fait l’objet d’une instruction par l’IRSN, l’Institut de radioprotection et de sûreté nucléaire. En deux mots, le stockage y est qualifié de « faisable » et le dossier ne présente pas « d’élément rédhibitoire ». Et donc si une décision parlementaire devait être prise en 2006 en faveur du stockage géologique, l’IRSN juge que les données disponibles le justifieraient.

Cet avis de l’IRSN est alors présenté au « Groupe permanent d’experts de l’ASN pour les installations destinées au stockage à long terme des déchets radioactifs. » Ce groupe conclut :

Des résultats majeurs relatifs à la faisabilité et à la sûreté d’un stockage ont été acquis.

2006

Tous les experts ont rendu leur avis sur le stockage géologique. À l’Autorité de sûreté nucléaire, l’ASN, de trancher. Puis viendra le tour pour le Gouvernement et le Parlement de se décider.

L’ASN considère que le stockage en formation géologique profonde est une solution de gestion définitive qui apparaît incontournable.

Avis de l’ASN sur les recherches relatives à la gestion des déchets à haute activité et à vie longue

C’est sans ambiguïté et un appel du pied explicite au Parlement.

Lequel, toujours en 2006, trouve malgré tout que ces quinze années sont passées drôlement vite, et que l’on ne serait toujours pas en mesure de décider. La décision est repoussée à 2012, et les études et recherches vont pouvoir continuer. L’ANDRA prend notamment alors en charge les recherches sur l’entreposage de longue durée.

L’article 3 de la loi 2006-739 du 28 juin 2006 propose d’approfondir toujours les trois mêmes axes de recherche :

  1. « La séparation et la transmutation des éléments radioactifs à vie longue. Les études et recherches correspondantes sont conduites en relation avec celles menées sur les nouvelles générations de réacteurs nucléaires […] afin de disposer, en 2012, d’une évaluation des perspectives industrielles de ces filières et de mettre en exploitation un prototype d’installation avant le 31 décembre 2020 ;
  2. Le stockage réversible en couche géologique profonde. Les études et recherches correspondantes sont conduites en vue de choisir un site et de concevoir un centre de stockage de sorte que, au vu des résultats des études conduites, la demande de son autorisation […] puisse être instruite en 2015 et, sous reserve de cette autorisation, le centre mis en exploitation en 2025 ;
  3. L’entreposage. Les études et recherches correspondantes sont conduites en vue, au plus tard en 2015, de créer de nouvelles installations d’entreposage ou de modifier des installations existantes, pour répondre aux besoins, notamment en termes de capacité et de durée […]. »

Que voit-on ? Que l’on repart pour un tour, déjà, sur avis du Parlement, contre celui de l’Autorité de sûreté, n’en déplaise à ceux qui crient à la technocratie ou à l’absence de démocratique en la matière. L’on voit aussi apparu que le stockage doit à présent être réversible. Et on note des dates qui, vues de 2022, nous font bien rire : un prototype d’installation de séparation ou transmutation avant fin 2020 quand Astrid a été abandonné en 2019, ou une demande d’autorisation de création de Cigéo en 2015 quand on l’attend pour 2023 ou 2024…

2008

La RFS III.2.f est abrogée par l’ASN qui la remplace par un « guide », le premier guide de l’ASN, sur le stockage définitif des déchets radioactifs en formation géologique profonde.

2009

L’ANDRA présente un rapport d’étape sur Cigéo, marquant le passage d’une phase de faisabilité à une phase d’avant-projet.

2010

Le CEA, alors encore Commissariat à l’énergie atomique, présente un rapport d’étape sur l’évaluation technico-économique des perspectives industrielles des filières de séparation et transmutation des substances radioactives à vies longues. 

2012

Sur cette base, l’IRSN rend un avis sur la séparation/transmutation. L’institut y déclare que la faisabilité n’est « pas acquise » et que les gains espérés, y compris en termes de sûreté, « n’apparaissent pas décisifs. »

Toujours 2012

Le CEA complète son rapport d’étape d’un rapport complet sur la séparation-transmutation des éléments radioactifs à vie longue, au titre de la Loi Bataille de 1991.

L’ANDRA est également à l’heure au rendez-vous et livre son bilan des études et des recherches sur l’entreposage et conclut que cette solution constitue un soutien au stockage géologique plus qu’une alternative.

2013

L’ASN s’appuie sur les deux rapports du CEA et sur l’avis de l’IRSN et conclut sur la transmutation : cette option ne devra pas être « un critère déterminant pour le choix des technologies examinées ».

Côté État, on se lance dans un débat public avant de trancher, et c’est de manière assez prévisible, l’option du stockage géologique qui en ressort.

2016

Forte fut la procrastination, mais cette année-là, le Parlement, et à une très grande majorité, vote l’adoption du stockage géologique comme solution de référence.

La loi 2016-1015 du 25 juillet 2016 précise « les modalités de création d’une installation de stockage réversible en couche géologique profonde des déchets radioactifs de haute et moyenne activité à vie longue ».

La même année, l’ANDRA dépose auprès de l’IRSN, pour instruction, les deux Dossiers d’options de sûreté (DOS) de Cigéo, pour les phases d’exploitation et post-fermeture.

L’ANDRA saisit également l’Agence internationale de l’énergie atomique, l’AIEA, pour demander une revue internationale sur les DOS. Celle-ci rendra rapidement ses conclusions : projet robuste, méthode adaptée. La revue internationale suggèrera des thématiques à investiguer davantage.

Le contenu du DOS et les discussions engagées au cours de la mission ont donné à l’équipe de revue une assurance raisonnable quant à la robustesse du concept de stockage. Constatant que, dans de nombreux domaines, la recherche est toujours en cours pour la démonstration ou la confirmation de la sûreté, l’ERI a identifié quelques domaines supplémentaires qu’il serait utile d’approfondir, afin de renforcer la confiance existante dans la démonstration de sûreté : production et transport des gaz, description du vieillissement des composants du centre de stockage au cours de la période d’exploitation, incertitudes liées au temps de resaturation des alvéoles de stockage et effet sur la dégradation des colis de déchets, rôle des microbes et formation potentielle de biofilms au cours de la période d’exploitation, et conséquences des défaillances non détectées.

Les DOS sont également instruits par la Commission nationale d’évaluation qui en restituera une analyse et des recommandations pour améliorer le projet.

2017

À son tour, l’IRSN rend la sentence de ses experts sur le DOS. Le projet fait état d’une « maturité technique satisfaisante au stade du DOS », mais il demeure des points durs. En particulier, la démonstration de maîtrise du risque d’incendie pour une certaine une famille de déchets de moyenne activité est insatisfaisante. Si cela n’est pas rédhibitoire pour l’avancement du projet Cigéo, pour ces déchets, pas de stockage possible en l’état, les études doivent continuer. Soit en vue d’une amélioration de la démonstration de sûreté, soit en vue d’un reconditionnement des déchets pour neutraliser leur réactivité chimique.

Les Groupes permanents d’experts de l’ASN pour les installations destinées au stockage à long terme des déchets radioactifs et pour les laboratoires et usines du cycle vont dans le même sens que l’IRSN :

En conclusion, les groupes permanents estiment que le DOS transmis par l’ANDRA montre que les options de sûreté de Cigéo sont dans l’ensemble satisfaisantes, hormis le cas particulier des bitumes. Sur cette base et compte tenu des engagements pris par l’ANDRA, une démonstration probante de la sûreté du projet de stockage devrait pouvoir être présentée dans le dossier de demande d’autorisation de création correspondant, sous réserve d’un traitement satisfaisant des points soulevés dans le présent avis, dont certains pourraient nécessiter des modifications d’éléments de conception.

2018

L’ASN rend son avis sur le DOS et le soumet à consultation du public. Bilan : « maturité satisfaisante » à ce stade. L’ASN reprend certaines recommandations précédemment émises pour les étapes futures (lesquelles seront la Déclaration d’utilité publique, attendue en 2022, et le Décret d’autorisation de création, dont la demande est prévue pour 2023 ou 2024).

La même année, une commission d’enquête parlementaire sur la sûreté et la sécurité des installations nucléaires soumet un rapport qui préconise de « poursuivre l’étude de la solution de l’entreposage de longue durée en subsurface comme alternative éventuelle au stockage géologique. » Et ce en dépit de tous les acquis précédents contestant la pertinence de l’entreposage comme alternative, motivé par les seules postures de militants antinucléaires.

2019

La députée  LREM Émilie Cariou, rapporteure du débat public susmentionné, propose l’entreposage comme alternative au stockage géologique. En tirant, là encore, un trait sur les travaux scientifiques et parlementaires depuis 1991.

La même année, la Commission nationale du débat public, dans le cadre du débat public sur le PNGMDR 2019-2021, demande à l’IRSN une revue bibliographique des recherches internationales sur les alternatives au stockage géologique. L’IRSN répond à cette demande, j’en parlais dans cette série d’articles. Je résumais ainsi l’avis IRSN :

  • Arrêter de produire des déchets ainsi que l’entreposage en (sub)surface ne sont pas retenus car, par essence, ils ne sont pas des alternatives au stockage géologique.
  • De même pour la séparation-transmutation, qui est au mieux un complément, pas une alternative.
  • L’immersion et le stockage dans les glaces polaires ont des limites techniques sérieuses et, surtout, des verrous politiques et éthiques.
  • L’envoi dans l’espace est une catastrophe en termes de sûreté et de coût.
  • Le stockage en forage a un potentiel très intéressant pour certains déchets, plus discutable pour d’autres mais sans problème majeur.

2020

L’ANDRA publie son dossier d’enquête publique préalable à la déclaration d’utilité publique.

2021

La Commission d’enquête sur la demande de reconnaissance d’utilité publique du projet Cigéo rend son rapport. En résumé :

La commission d’enquête considère que le projet est à la fois opportun, pertinent et robuste au regard des textes réglementaires qui stipulent un stockage des déchets en couche géologique profonde sur un site disposant d’un laboratoire souterrain.

Au terme de ce bilan entre d’une part le risque, et d’autre part les mesures de précaution la
commission d’enquête estime la proportionnalité acquise et pertinente.

La commission d’enquête émet un AVIS FAVORABLE à la Déclaration d’Utilité Publique du projet de centre de stockage en couche géologique profonde des déchets de haute et moyenne activité à vie longue (Cigéo), assorti de CINQ recommandations ci-après.

Les cinq recommandations sont les suivantes ;

  1. D’établir un échéancier prudent des aménagements préalables dans l’occurrence de l’obtention des
    autorisations ;
  2. De veiller à une insertion paysagère harmonieuse avec le paysage rural ;
  3. De procéder à un défrichement progressif du bois Lejuc, aux seuls besoins de la DRAC afin de
    préserver au maximum la biodiversité ;
  4. De maintenir un écran visuel sur la partie sud pour préserver les vues depuis les villages
    environnants ;
  5. De compléter la communication envers le public de son territoire proche et l’adapter en fonction
    de la phase opérationnelle de Cigéo, tout en reconnaissant l’importance de la communication déjà
    réalisée par le maître d’ouvrage.

Toutefois, en parallèle, la Banque publique d’investissement (BPI) lance un appel à projets appelant à chercher des solutions alternatives au stockage géologique profond.

Conclusion

Ce thread débute en 1991. La décision devait être prise en 2006. Elle a été repoussée jusqu’en 2016, pour des raisons… Variables, souvent politiques. Depuis, toutes les étapes ont conforté la décision faite alors. Et pourtant, 30 ans après la loi de 1991, 15 ans après la loi de 2016, on n’a pas encore mis le premier coup de pelle pour Cigéo. On repousse…

Et surtout, les décideurs (ça te va, les décideurs ?) font énormément d’efforts… Pour ne pas décider ni devoir décider, pour revenir en arrière, remettre en question les décisions et acquis précédents, essayer encore et encore de nous faire repartir vers 1991.

C’est pour cela qu’il est encore si facile de clamer « on sait pas quoi faire des déchets » ! Si, on sait quoi faire, depuis 15 ans, et chaque jour depuis, on sait un peu mieux. Mais on procrastine. Les opposants n’ont évidemment pas intérêt à encourager la prise de décision. Les élus… Pareil. Le statu quo est confortable, devoir s’engager sur un tel sujet est terrifiant. Chacun lègue à la « génération » (électorale) future.

Et encore, ma chronologie est ultra franco-centrée ! Mais la démarche parallèle a lieu dans des tas de pays, et les résultats sont cohérents !

Dans ce thread ci-dessous, je décortiquais un rapport de l’Agence pour l’énergie nucléaire de l’OCDE. Son joli nom : Management and Disposal of High-Level Radioactive Waste : Global Progress and Solutions.

Les optimistes me rétorqueront que la recherche sur les alternatives est nécessaire pour justifier de l’intérêt de la réversibilité du stockage géologique, et pour l’acceptation par les politiques et le public, et qu’elles n’empêchent pas le projet d’avancer. En effet, l’idée d’avoir un stockage réversible pendant environ un siècle est de pouvoir changer d’avis si une alternative émergeait d’ici là. Donc, évidemment, il faut chercher des alternatives, quand bien même sait-on qu’il n’y a rien à espérer qui remettrait en question la pertinence du choix du stockage géologique.

J’espère seulement qu’effectivement, ces errements ne freineront pas à nouveau le projet, et que les différentes formations politiques au pouvoir se garderont de nous renvoyer sans cesse en 1991 à vouloir étudier les alternatives, encore et encore, avant de prendre une décision.

Les clés pour décider, on les a déjà. L’enquête pour la DUP de Cigéo est bouclée et, d’ici deux ou trois ans viendra celle pour le Décret d’autorisation de création. Le moment ultime de prendre cette lourde décision.

Le processus accompagnera le mandat du Président élu en 2022 et le Décret d’autorisation de création pourrait être prêt en toute fin de mandat, donc à la veille d’une échéance électorale. Que faut-il attendre ? En tout cas, je pense que ce thread le montre assez bien, il n’y aura, sauf révélation majeure, aucune raison d’encore procrastiner. Alors, que fera-t-on ?

Je vous laisse entre les mains du Président de l’ASN. Parce qu’il a l’intelligence d’être d’accord avec moi.

(Joke, hein)

La réaction en chaîne redémarre à Tchernobyl ?

Contexte ?

‘It’s like the embers in a barbecue pit.’ Nuclear reactions are smoldering again at Chernobyl

C’est ainsi que le sujet est rentré dans l’actualité. Par un très bon article de Science Mag, paru le 5 mai.

Puis c’est arrivé en France. La nuance s’est perdue, s’est retrouvée, la précision s’est dégradée… Puis, les pseudo-comptes de médias sur Twitter, vous savez, ceux qui jamais ne donnent de sources et résument une info en un seul tweet qui doit être le plus accrocheur possible, et bien ils se sont emparés du sujet.

Si vous avez quelques éléments de physique nucléaire, de physique des réacteurs, vous pouvez arrêter votre lecture ici et lire l’article de Science Mag (en anglais) ou celui de Thrust My Science (en français).

Sinon… On reprend.

La fission nucléaire et la réaction en chaîne

J’ai publié sur ce blog, très récemment, un billet pour rappeler le principe de la réaction de fission en chaîne. Donc ici, je vais faire très concis :

  • Certains atomes, comme l’uranium 235 (naturel), l’uranium 233 ou le plutonium 239 (l’un et l’autre de synthèse), sont fissiles : dans certaines conditions, il est possible de fragmenter le noyau de l’atome en plusieurs éclats.
  • Cette réaction de fragmentation est la fission ; et elle libère une quantité colossale d’énergie.
  • La fission est généralement induite par une interaction, une collision en quelque sorte, entre le noyau et un neutron baladeur.
  • La fission libère elle-même des neutrons, qui peuvent donc à leur tour induire de nouvelles fissions. C’est la réaction en chaîne.

À Tchernobyl, ce sont des flux de neutrons en hausse qui suscitent l’attention. Pas une réaction en chaîne, mais ce qu’on appelle une augmentation de la réactivité ; nous y reviendrons.

D’où viennent les neutrons ?

La fission nucléaire produit ses propres neutrons. Mais, comme l’œuf et la poule, est-ce la première fission qui produit les premiers neutrons ? Mais par quoi est-elle induite, cette première fission ? Ou bien sont-ce les premiers neutrons qui produisent les premières fissions ? Mais ces neutrons viennent d’où s’il n’y avait pas de fission avant ?

L’œuf et la poule. Les deux cas de figure coexistent.

Fission spontanée

La fission ne demande pas toujours de neutron en amont pour la déclencher.

Certains atomes radioactifs, pourtant parfois considérés comme non-fissiles, ont une infime fraction de leurs désintégrations radioactives qui ne se font ni sous la forme de désintégration α, ni de désintégration β. L’uranium 238, par exemple, présent en abondance dans le cœur d’un réacteur (pour rappel, l’uranium 238 représente 99,3% de l’uranium naturel ; et les réacteurs type Tchernobyl fonctionnaient à l’uranium naturel ou très faiblement enrichi, donc au minimum 99% d’uranium 238), présente 50 fissions spontanées par million de désintégration. Une tonne d’uranium 238 affiche 12 milliards de désintégrations par seconde, dont environ 700 000 fissions spontanées. Chacune émettant entre 2 et 3 neutrons, ce sont 1,5 millions de neutrons qui sont ainsi libérés, chaque seconde, dans une tonne d’uranium 238.

Par ailleurs, dans un réacteur nucléaire, l’uranium 238 absorbe beaucoup de neutrons, ce qui conduit à le transformer en plutonium 239, 240, 241… Le plutonium 240, justement, est tout à la fois considéré comme non-fissile mais sujet à la fission spontanée. Dix fois moins que l’uranium 238 : seulement 5 fissions par million de désintégration. Cependant, le plutonium 240 est beaucoup plus radioactif que l’uranium 238. Un kilogramme de plutonium 240 affiche 8500 milliards de désintégration par seconde, dont 43 millions de fissions spontanées, libérant près de 100 millions de neutrons par seconde.

Récapitulons.

AtomeUranium 238Plutonium 240
Masse1 tonne1 kilogramme
Fissions par million
de désintégration
505
Désintégrations par seconde12 milliards8500 milliards
Fissions par seconde700 00043 millions
Neutrons émis par seconde1,5 millions100 millions

Les masses que je propose, d’une tonne et d’un kilogramme, sont totalement à titre indicatif et ne représentent pas l’inventaire du cœur du réacteur 4 de Tchernobyl (qui doit comporter environ 100 tonnes d’uranium 238 et au plus quelques kilogrammes de plutonium 240), ni de l’inventaire accumulé dans la salle où un risque de réaction en chaîne est suspecté.

Notez également que cette forte tendance à la fission spontanée rend le plutonium 240 extrêmement indésirable dans les armes nucléaires et est le facteur limitant la production de plutonium de qualité militaire dans des réacteurs non-optimisés pour.

Vous l’aurez compris, de nombreux neutrons sont émis spontanément dans les débris du cœur du réacteur. L’œuf.

Réactions induites par la radioactivité

La fission n’est pas le seul moyen d’émettre des neutrons. Soumis à un rayonnement α, voire à un rayonnement γ, certains atomes, comme le béryllium, vont réagir par l’émission de neutrons.

Dans le cœur d’un réacteur, les émetteurs de rayonnement α sont légion : uranium et plutonium en tête.

Ainsi, des interactions entre différents rayonnements, spontanés, et des matériaux stables ou instables, du cœur ou du réacteur, peuvent conduire à la production d’un flux de neutrons.

La poule.

Quelle vie pour les neutrons ?

Virtualisons une région du cœur accidenté du réacteur 4 de Tchernobyl, effondré dans cette fameuse salle souterraine. On va y retrouver :

  • du combustible : uranium 238 en abondance, petites quantités d’uranium 235, de plutonium
  • des produits de fission : césium, baryum, strontium…
  • quelques actinides mineurs, qui peuvent aussi être sources intenses de rayonnements α et de fission spontanée : américium, curium…
  • des débris du cœur : graphite, gaines du combustible, tuyauteries d’eau éclatées ou fondues…
  • des débris du bâtiment : gravats, câbles, tuyauteries, sable et plomb…
  • des absorbants de neutrons : barres de contrôle du réacteur, absorbants ajoutés en post-accidentel…

La composition est inconnue, pas homogène, et de géométrie quelconque.

Et dans cette région virtuellement délimitée que l’on considère, sont émis, disons, un million de neutrons par seconde par les réactions spontanées d’œuf et de poule énoncées ci-avant.

Que va-t-il arriver à ces différents neutrons ? Et bien, voici ce que l’on peut imaginer, avec des valeurs fantaisistes à titre d’illustration :

  • 100 000 vont rencontrer des noyaux fissiles et réussir à provoquer des fissions, produisant 250 000 nouveaux neutrons que l’on dira « de deuxième génération ».
  • 100 000 vont rencontrer des noyaux fissiles, mais être absorbés sans réussir à produire de fission.
  • 200 000 vont réussir à s’échapper de la région virtuelle et atteindre d’autres salles de la centrale, voire l’extérieur ; une partie sera mesurable et permettra de suivre indirectement ce qui se passe dans la région.
  • 600 000 vont être absorbés par les débris du cœur, du bâtiment, ou par les absorbants ajoutés à cette fin.

Et si l’on regarde les 250 000 neutrons de deuxième génération, ils vont se répartir de la même façon : 25 000 vont provoquer des fissions produisant 60 000 neutrons de troisième génération, 50 000 vont s’échapper, le reste va être absorbé.

La troisième génération, de 60 000 neutrons, va également en laisser échapper 12 000, en utiliser 6 000 pour la fission (donc 15 000 neutrons de quatrième génération), et perdre le reste dans les absorbants.

Sur ces trois générations, il est intéressant de noter que 262 000 neutrons se sont échappés, dont une partie aura été détectée par les moyens de surveillance.

Arrêtons le compte là, vous comprenez bien que chaque génération, le nombre de neutrons diminue fortement : c’est ce qu’on appelle un mélange « sous-critique ». La réaction en chaîne est incapable de s’auto-entretenir, elle s’étouffe de génération en génération, et s’il n’y avait pas de production de neutrons par fission spontanée ou par les rayonnements α et γ, cela ferait 35 ans qu’on ne mesurerait plus un neutron.

Criticité

On dit d’un mélange de matière fissile et d’autres substances qu’il est critique quand fission produit à son tour exactement une nouvelle fission.

Dans notre cas, le mélange serait critique si, pour un million de neutrons initialement, par exemple :

  • 200 000 s’échappaient – pas de changement de ce côté là,
  • 350 000 étaient absorbés… par les absorbants, débris, etc.,
  • 50 000 étaient absorbés par des noyaux fissiles sans réussir à produire de fission,
  • 400 000 étaient absorbés par des noyaux fissiles, produisant des fissions, et donc libérant 1 million de nouveaux neutrons.

Et alors, la réaction boucle : le réacteur est stable, on dit qu’il est critique. Dans un réacteur nucléaire, aussi dramatiquement connoté soit le terme « critique », il est l’état normal, réaction en chaîne stable, contrôlée.

Dans le cas précédent, nous étions « sous-critiques ». Il existe un troisième état, « surcritique » : c’est lorsque notre million de neutrons initial induit encore plus de fissions, et l’on se retrouve avec plus d’un million de neutrons une génération plus tard.

Dans un cas légèrement surcritique, on passerait, génération après génération, de 1 000 000 de neutrons à 1 050 000, puis 1 102 500, puis 1 157 625, puis 1 215 506… (ici, +5% par génération). C’est par exemple le cas d’un réacteur nucléaire dont on fait monter la puissance, après un redémarrage ou pour suivre la demande du réseau électrique. C’est une augmentation exponentielle, certes, mais d’une extrême lenteur : il faut 16 générations pour atteindre une population de 2 000 000 de neutrons dans une même génération. Dans le contexte de la pandémie de covid-19, c’est analogue à un R0 de 1,05.

Dans un cas fortement surcritique, le nombre de neutron augmente… Beaucoup plus vite. Peu de pertes de neutrons ou d’absorption sans fission (dite « absorption stérile »). On va avoir initialement 1 000 000 de neutrons puis, par exemple, 1 400 000 à la deuxième génération, 1 960 000 à la troisième… On dépassera largement les deux millions dès la quatrième. Ici, ce serait un R0 de 1,4. La limite théorique étant celle d’un R0 supérieur à 2 : la population de neutrons double à chaque génération, l’exponentielle est extrêmement raide. Ces cas fortement surcritiques sont ceux des bombes atomiques… Ou du réacteur 4 de Tchernobyl lors de l’accident du même nom.

Mais revenons-en au Tchernobyl d’aujourd’hui.

Les braises sous les cendres

La situation à Tchernobyl aujourd’hui est indéniablement sous-critique. Pas de réaction en chaîne, il y a un flux constant de neutrons par les réactions spontanées, mais qui n’est pas amplifié par les fissions induites.

Précédemment, je proposais le scénario suivant :

Première génération1 000 000
Neutrons échappés200 000
Neutrons absorbés par des éléments non fissiles600 000
Neutrons absorbés de manière stérile par des éléments fissiles100 000
Neutrons qui entraînent une fission100 000
Deuxième génération250 000
Neutrons échappés 50 000
Neutrons absorbés par des éléments non fissiles 150 000
Neutrons absorbés de manière stérile par des éléments fissiles 25 000
Neutrons qui entraînent une fission 25 000
Troisième génération62 500
Neutrons échappés 12 500
Neutrons absorbés par des éléments non fissiles 37 500
Neutrons absorbés de manière stérile par des éléments fissiles 6 250
Neutrons qui entraînent une fission 6 250

Avec, sur les trois générations, 262 500 neutrons qui s’échappent.

Cependant, récemment, on a mesuré une augmentation du nombre de neutrons détectés aux limites du bâtiment. Davantage de neutrons qui s’échappent, donc.

Deux interprétations possibles. La première est qu’il y a une augmentation du taux de neutrons qui s’échappent. Par exemple, une structure locale qui s’est effondrée qui change la géométrie, et des neutrons qui étaient auparavant absorbés s’échappent à présent. Exemple :

Scénario de baseNouveau scénario
Première génération1 000 0001 000 000
Neutrons échappés200 000250 000
Neutrons absorbés par des éléments non fissiles600 000550 000
Neutrons absorbés de manière stérile par des éléments fissiles100 000100 000
Neutrons qui entraînent une fission100 000100 000
Deuxième génération250 000250 000
Neutrons échappés 50 00062 500
Neutrons absorbés par des éléments non fissiles 150 000137 500
Neutrons absorbés de manière stérile par des éléments fissiles 25 00025 000
Neutrons qui entraînent une fission 25 00025 000
Troisième génération62 50062 500
Neutrons échappés 12 50015 625
Neutrons absorbés par des éléments non fissiles 37 50034 375
Neutrons absorbés de manière stérile par des éléments fissiles 6 2506 250
Neutrons qui entraînent une fission 6 2506 250

Au bilan, nous n’avons pas du tout d’évolution sur la réaction en chaîne… Mais le nombre de neutrons en fuite passe de 262 500 à 328 125 (+25%).

La seconde interprétation est que le taux de fuite n’a pas changé… mais que la population de neutrons a augmenté. Que la réaction en chaîne est moins sous-critique, qu’elle s’atténue plus lentement, génération après génération. Cela peut avoir deux causes :

  • Soit les neutrons absorbés par des éléments fissiles entraînent plus souvent de fissions (moins de « captures stériles »)
  • Soit l’absorption par les débris, absorbants, etc., est moins efficace, et davantage de neutrons sont absorbés par des éléments fissiles.

On va mettre en application ce second cas.

Scénario de baseNouveau scénario
Première génération1 000 0001 000 000
Neutrons échappés200 000200 000
Neutrons absorbés par des éléments non fissiles600 000550 000
Neutrons absorbés de manière stérile par des éléments fissiles100 000125 000
Neutrons qui entraînent une fission100 000125 000
Deuxième génération250 000312 500
Neutrons échappés 50 00062 500
Neutrons absorbés par des éléments non fissiles 150 000171 900
Neutrons absorbés de manière stérile par des éléments fissiles 25 00039 100
Neutrons qui entraînent une fission 25 00039 100
Troisième génération62 50097 700
Neutrons échappés 12 50019 500
Neutrons absorbés par des éléments non fissiles 37 50053 700
Neutrons absorbés de manière stérile par des éléments fissiles 6 25012 200
Neutrons qui entraînent une fission 6 25012 200

Beaucoup de chiffres, hein ? Mais finalement, c’est assez simple à comprendre : tout a augmenté. Évidemment les neutrons qui s’échappent et que l’on détecte, qui sont passés de 262 500 à 282 000 (+7%), mais également le nombre de neutrons à chaque génération, qui diminue toujours, mais moins vite. Toujours pour faire un parallèle avec la pandémie, le R0 demeure inférieur à 1, mais remonte un peu. Pas de quoi relancer l’épidémie pour autant, puisque chaque malade contamine en moyenne moins d’une personne. Et pas d’exponentielle. Simplement la preuve d’une circulation résiduelle du virus… La preuve d’une variation du nombre de fissions produites.

Conséquences ?

La situation demeure stable à Tchernobyl. C’est la première chose à garder en tête : il n’y a pas d’emballement, il n’y a pas de réaction en chaîne auto-entretenue, il n’y a pas d’évolution d’ensemble de la situation.

De plus, dans un réacteur accidenté, il n’est pas anormal de voir des variations d’activité, on s’attend à ce que l’élément perturbateur ayant conduit à cette variation soit tôt ou tard épuisé, ou compensé par un autre élément perturbateur.

Cependant, il ne peut pas être exclu aujourd’hui que la sous-criticité continue à se déliter progressivement. Que le R0 augmente. Que l’on se rapproche de 1 – d’un état critique.

Critique, au sens de la neutronique, de la physique nucléaire, pas au sens médiatique. Critique, au sens où la réaction en chaîne parvient à s’auto-entretenir.

Et alors, irait-on vers un deuxième accident de Tchernobyl ?

Assurément, non. Une situation de forte surcriticité comme à Tchernobyl, avec dégagement important d’énergie et donc potentiel destructeur, c’est exclu, parce que les conditions d’obtention d’une telle réactivité sont hors d’atteinte. En revanche, l’atteinte d’une criticité oscillante, avec des moments où le milieu devient légèrement surcritique, s’étouffe, redémarre, se ré-étouffe… N’est pas exclu. En pareil cas, l’émission d’énergie est très faible, sans conséquence. En revanche, l’émission de neutrons et de rayonnements γ devient considérable, avec de forts risques d’irradiation grave pour tout le monde aux alentours.

Le risque est alors de rendre le démantèlement futur du réacteur infernal, faute de pouvoir garantir que l’on n’aura pas des flashs de neutrons pendant que des personnels seront aux alentours. Voilà pourquoi l’on surveille, pourquoi on envisage dès maintenant d’identifier les causes et les parades à éventuellement mettre en œuvre.

Si vous voulez vous faire une idée plus précise de ce qu’est un « accident de criticité », les conséquences que cela peut avoir, prenez le temps de découvrir la sombre histoire de l’accident de Tokai Mura.

Merci pour votre lecture, et gardez la tête froide : ça inclut aussi bien de ne pas s’alarmer pour rien… Que de survivre à l’agacement suscité par les alarmistes.

Je sais, ça vaut pour moi aussi.

La limite d’âge à 40 ans des centrales nucléaires

Ce billet est une reprise d’un thread pour revenir sur un sujet qui a fait l’objet de nombreux commentaires dernièrement : le fonctionnement des réacteurs nucléaire au-delà de leur quarantième année de service.

Préambule

Il se dit, essentiellement chez les opposants au nucléaire, que les centrales ont été conçues pour un maximum de 40 ans, après quoi elle doivent nécessairement être mises à l’arrêt.

Alors, immanquablement, quand l’Autorité de sûreté nucléaire dit qu’un fonctionnement jusqu’à 50 ans est envisageable sous des conditions qu’elle précise, les opposants hurlent au complot, à la connivence entre l’Autorité et les industriels au mépris de la santé humaine.

Mais si ce n’est pas 40 ans la limite, quelle est-elle ? D’où vient-elle ? Qui la fixe ?

J’avais déjà proposé des éléments explicatifs à ce sujet dans un précédent article. Complétons donc…

Non, ce nombre de 40 ans ne sort pas d’absolument nulle part. Il existe effectivement une durée de service prise comme hypothèse à la conception, laquelle sert de base au dimensionnement pour les ingénieurs qui y travaillent, car on ne peut naturellement pas leur demander de concevoir quelque chose qui durera indéfiniment : ils eurent une durée cible à prendre en considération.

Celle-ci fut de 25, 30 ou 40 ans selon les réacteurs et les époques. Mais un ingénieur ne conçoit pas un équipement pour qu’il fonctionne au maximum le temps prévu dans le cahier des charges, c’est une évidence, non ? C’est une durée minimale ! Et, compte tenu des marges prises à la conception, qui sont généralement larges dans l’industrie, très larges dans l’industrie de l’époque, extra-larges dans l’industrie nucléaire de l’époque (faute des moyens de calculs poussés dont nous disposons aujourd’hui), ce minimum peut tout à fait, en théorie, être dépassé.

Au-delà des 40 ans

En pratique, cela exige tout de même une maintenance, une surveillance, des études et des justifications, et c’est ce qu’exigent les autorités de sûreté dans tous les pays avant d’autoriser toute extension de durée de service. Des réacteurs dont on attendait 40 ans de fonctionnement initialement sont déjà autorisés à continuer jusqu’à 60 ans; par exemple aux USA. Les exploitants d’une poignée de réacteurs, dans ce pays, ont même déjà fourni les éléments à l’autorité de sûreté locale pour obtenir une autorisation de service jusqu’à 80 ans, et le processus a été initié pour de nombreux autres réacteurs. À ce jour, le maximum à retenir serait plutôt 80 ans que 40, donc.

Et si Greenpeace transforme un minimum de 40 ans en maximum, ne faisons pas la même erreur : 80 ans est bien un maximum, réglementaire (et donc jusqu’à preuve du contraire), ce qui ne veut pas dire que tous les réacteurs pourront atteindre cet âge. Un réacteur, c’est une machine extrêmement complexe, composée de centaines ou milliers de km de tuyauteries, câbles, et des centaines de robinets, de pompes, de composants divers.

La totalité moins deux de ces équipements est remplaçable.

Donc à ces deux exceptions près, sous condition d’une maintenance appropriée, la durée de service théorique d’un réacteur nucléaire est infinie. Ces deux exceptions sont l’enceinte de confinement et la cuve. Et, dans la pratique, la limitation la plus sévère est la cuve. La cuve, c’est un élément du « circuit primaire », un cylindre d’une douzaine de mètres de long pour quatre de large, dans laquelle l’eau circule de bas en haut en rencontrant le combustible, le cœur du réacteur, où l’énergie de la réaction nucléaire est transmise à l’eau qui s’échauffe alors.

La cuve est exposée à un flux intense de neutrons en provenance du cœur, qui en dégrade les propriétés mécanique : tenue aux chocs mécaniques, aux chocs thermiques, à la pression… Et on doute franchement de pouvoir la remplacer si besoin. D’où le fait qu’elle soit la limite pratique à la durée de service d’un réacteur.

Et c’est en modélisant la dégradation de ses propriétés mécaniques au fur et à mesure de son irradiation que les concepteurs de nos réacteurs ont estimé la durée de service desdits réacteurs. En modélisant. Dans les années 60.

Aujourd’hui, on connaît plutôt bien l’état des cuves. Il « suffit » d’analyser (c’est loin d’être simple, mais ça se fait). Et, évidemment, on connaît de manière plus fiable les cuves dans leur état actuel… Que les ingénieurs ne l’estimaient. Ça peut sembler stupidement évident, mais c’est un véritable sujet : aux yeux de certaines personnes, il vaudrait mieux faire confiance, pour connaître l’état actuel de nos cuves, aux concepteurs d’il y a cinquante ans qu’aux analystes aujourd’hui ; les estimations seraient plus fiables que de simplement constater. Mystère.

Quelles différences entre la conception et aujourd’hui ?

L’on peut discuter de quelques exemples d’hypothèses, faites à l’époque, alors totalement légitimes, mais qu’il est tout aussi légitime de rejeter ou de questionner aujourd’hui. Et l’invalidation de ces hypothèses contribue à expliquer que les durées de service augmentent par rapport aux estimations initiales.

Les marges

Il y en a un jeu d’hypothèse qu’il est très simple de remettre en question, ce sont toutes celles liées aux marges de calcul. Les modèles simples de l’époque, par rapport aux simulations numériques d’aujourd’hui, ce n’est pas la même affaire. Ils connaissaient la plupart des limites de leurs modèles, les imprécisions de leurs calculs, les simplifications qu’ils devaient adopter. Et en ingénieurs compétents et conscients, ils compensaient ces approximations par des marges. Les marges d’erreurs aujourd’hui sont plus fines, puisque l’on a une connaissance bien plus pointues du comportement des aciers sous irradiation. Et l’on a donc « du mou », une marge historique dont on n’a plus la nécessité aujourd’hui.

Ce gain sur les marges d’erreur est en partie « consommé » par des exigences de sûreté plus sévères aujourd’hui. Autrement dit, une partie de la marge d’erreur a été convertie en marge de sécurité : on envisage des scénarios beaucoup plus contraignants, pour les matériaux par exemple, qu’à l’origine, et donc les marges historiques nous permettent de justifier que ces scénarios plus contraignants sont gérables.

Et ce gain sur les marges d’erreur est également en partie du temps gagné sur la durée de service de la cuve.

Le taux d’utilisation

Un autre exemple d’hypothèse à revoir, c’est celle sur la quantité d’énergie produite.

Je n’ai pas fait mes exercices de bibliographie pour connaître quelles hypothèses exactes étaient considérées. Mais il ne me paraît pas déraisonnable d’imaginer qu’à la conception, on s’attendait à ce qu’un réacteur fonctionne en moyenne (donc, compte tenu des arrêts planifiés ou imprévus) à 90% de sa capacité, et ce pendant 40 ans. Autrement dit, qu’un réacteur de 900 MW (ils représentent la majorité du parc français aujourd’hui, avec 32 réacteurs sur 56) produirait 284 TWh d’électricité en 40 ans.

Or, la production électrique est directement liée à la production d’énergie nucléaire ayant eu lieu dans la cuve, et donc au nombre de fissions, et donc au nombre de neutrons émis, et donc à l’irradiation accumulée par la cuve (provenant notamment des neutrons). Donc un réacteur qui a moins produit, c’est, toutes choses égales par ailleurs, une cuve qui a moins été irradiée, et a donc moins vieilli.

Si, dans la pratique, le réacteur a passé plus de temps qu’attendu à l’arrêt, ou s’il a du faire du suivi de charge, c’est à dire faire varier sa puissance pour s’adapter à la demande, sa capacité a pu n’être utilisée qu’à 75% en moyenne, par exemple. La production électrique en 40 ans s’est alors établie à 237 TWh. Par rapport à la prévision initiale de 284 TWh, il reste donc 47 TWh à produire ; soit 8 ans de service à raison de 6 TWh par an.

La géométrie du cœur

Encore une hypothèse de conception que la réalité n’a pas respectée.

Typiquement, on renouvelle le cœur d’un réacteur à raison d’un tiers tous les ans. Donc le combustible passe, au total, 3 ans en cuve.

Plus il est vieux, moins le combustible possède d’éléments fissiles (uranium 235), et plus il contient de produits de fission qui absorbent les neutrons et donc réduisent la réactivité, l’efficacité du combustible. Pour compenser, on met le combustible neuf en périphérie du cœur, et à chaque rechargement, on le rapproche du centre du cœur parce qu’il a vieilli. Donc, la première année, il est sur l’extérieur, la deuxième année, il est sur une couronne intermédiaire et la troisième année, il la passe en plein milieu du cœur.

Et chaque année, on sort le combustible qui est en plein milieu, usé, on décale tout, on met du combustible neuf en périphérie, et on repart pour un an. C’est très schématisé, mais c’est l’idée. Quel rapport avec l’usure de la cuve ?

C’est le fait de mettre le combustible neuf, le plus réactif, et donc le plus gros émetteurs de neutrons – irradiants pour la cuve, je le rappelle – en périphérie, au plus proche des parois de la cuve. Celle-ci est donc d’autant plus fortement irradiée… Et c’est quelque chose que l’on avait bien identifié à la conception.

Mais entre temps, on s’est mis à faire une sorte de panachage du combustible neuf / un peu vieilli / très vieilli, pour trouver le meilleur compromis possible entre optimisation de l’utilisation du combustible et usure de la cuve. Et la conséquence, c’est que l’on gagne encore des années. Attention toutefois, l’utilisation, dans certains réacteurs, de combustible MOX (combustible recyclé à base de plutonium) a l’effet inverse, et a limiter le gain obtenu par le changement d’agencement du combustible dans le cœur.

Les transitoires

Un dernier exemple d’hypothèse de conception, le nombre de transitoires, doux ou rapides, subis par la cuve. Un transitoire, c’est un changement, plus ou moins brutal, des conditions de fonctionnement. Typiquement, une variation de pression ou de température, d’autant plus nocive à l’intégrité du circuit qu’elle est brutale.

Ces transitoires sont, autant que possible, limités en ampleur et en vitesse en fonctionnement normal, mais pas inévitables. Et ils sont à compléter des arrêts d’urgence pour des incidents et accidents.

Dans les études de conception, les ingénieurs d’alors ont pris en considération ces transitoires, avec des hypothèses, par exemple d’un à deux arrêts d’urgence par an et par réacteur. Valeur qui fut vérifiée pendant des années, mais aujourd’hui, la moyenne est plutôt autour de 0,5 arrêt d’urgence par an et par réacteur. Donc moins de stress mécanique pour le circuit primaire, et des années de gagnées.

Les limites ne sont pas que techniques

Les éléments présentés depuis le début de cet article sont à considérer sous condition d’une maintenance appropriée de tous les autres équipements du réacteur, voire leur remplacement périodique. Or, la maintenance a un coût, qui peut, à la longue, être élevé.

Et c’est pour ça que, dans la pratique, ce qui détermine quasiment toujours la fin de vie d’un réacteur, ce n’est rien de tout ce que je viens de vous expliquer. Ce peut être un accident, mais le plus souvent, c’est une décision politique (Fessenheim, Allemagne…) ou une décision économique. Car, quand la maintenance pour garder en service un réacteur coûte plus cher que ce que le réacteur rapporte en vente d’électricité… Alors c’est souvent une bonne raison pour son propriétaire ou exploitant de décider de son arrêt définitif.

Ce fut le destin de pas mal de réacteurs aux États-Unis en particulier, d’autant plus aux USA, il y a deux facteurs de complications pour la rentabilité des réacteurs nucléaires : le boom du gaz de schiste qui tire les prix de l’électricité vers le bas, et donc réduit la rentabilité des réacteurs, et les centrales qui comptent 1 seul réacteur, moins rentables que lorsqu’elles en comptent 2 ou plus, pour des raisons de mutualisation des compétences et matériels.

Conclusion

À l’issue de cet article, vous connaissez les trois principaux signaux indiquant la fin de vie d’un réacteur nucléaire :

  • Une décision politique en ce sens.
  • La non-rentabilité.
  • L’usure excessive de la cuve.

Et aucunement quelque chose d’aussi grossier que le nombre des années, contrairement aux allégations trompeuses de petits hommes verts.

Démystification rapide

Greenpeace France propose 10 raisons, selon eux, de fermer une centrale nucléaire après ses 40 ans. À la lumière des éléments présentés dans cet article, répondons-y…

« Les centrales nucléaires n’ont pas été conçues ni testées pour durer plus de 40 ans »
Conçues non, mais testées si, au regard de toutes les centrales déjà autorisées à fonctionner plus (dont certaines approchent déjà les 50 ans).

« Les centrales nucléaires, leurs matériaux et leurs équipements vieillissent mal, ce qui affecte la performance des réacteurs. »
La performance affecte la production et donc la rentabilité économique. Si les exploitants souhaitent prolonger un réacteur, c’est que celui-ci est rentable. Lorsqu’il ne l’est pas, soit ils font ce qu’ils peuvent pour qu’il le redevienne, soit ils le mettent à l’arrêt, ça s’est déjà vu.

« Certains composants essentiels s’abîment mais ne sont pas remplaçables. »
Cela induit que la durée de service n’est pas infinie. Pas qu’elle est de 40 ans.

« Les réacteurs nucléaires souffrent aussi d’anomalies et de défauts de fabrication. »
Connus, suivis, et qui peuvent évoluer jusqu’à avoir rogné les marges de sûreté et donc conduire à exiger l’arrêt définitif. Décision qui appartient à l’ASN, mais qui n’est pas conditionnée à un âge, ce serait absurde.

« Les réacteurs ont été imaginés dans les années 1970 et 80 »
Ce qui veut dire qu’ils ont bénéficié de 50 ans de suivi, de retour d’expérience international, d’évolutions matérielles et organisationnelles. Et donc qu’on les connaît bien mieux aujourd’hui qu’à l’époque. Je rappelle qu’au titre de ce suivi, en France, chaque installation nucléaire fait l’objet d’une réévaluation complète de sa sûreté entre l’exploitant, l’ASN et l’IRSN, pour s’assurer de sa conformité aux standards de sûreté en vigueur (et pas seulement ceux à la conception).

« Les vieilles centrales ne seront jamais aux normes les plus récentes. »
Si, cf. tweet précédent. Aux normes les plus récentes qui leurs sont applicables, pas aux normes des réacteurs neufs. Pour avoir des réacteurs neufs, il faut construire des réacteurs neufs.

« Tous les ans, EDF demande des dérogations pour contourner les normes de sûreté. »
Et soit fournit les justifications auprès de l’ASN pour les obtenir, donc en proposant des moyens palliatifs permettant d’un côté de gagner en sûreté ce qu’ils perdent de l’autre, soit n’obtient pas ces dérogations.

« Le risque d’accident grave augmente. »
Non, Greenpeace confond tout simplement le fait qu’on identifie de plus en plus de sources de risques au fil des années (retour d’expérience, consolidation des connaissance…) avec une prétendue augmentation du nombre de ces sources. Comme je le mentionnais précédemment, une réévaluation de sûreté décennale est pratiquée pour s’assurer de la conformité aux standards en vigueur -> le risque d’accident grave diminue au fil du temps. Par exemple avec le retour d’expérience post-Fukushima.

« Les centrales polluent l’environnement au quotidien. »
Propos qui ne brille que de sa vacuité et ne mérite pas débat : on se doute qu’ils étaient à la peine pour arriver à 10 arguments). Je vous propose de juste admettre, dans le cadre de cet article, que c’est éventuellement un argument contre le nucléaire, mais sans rapport avec une limite à 40 ans.

« Prolonger la durée de vie des réacteurs, ça coûtera cher et on ne sait pas encore combien. »
Le processus d’échange tripartite entre l’ASN, l’IRSN et EDF est continu, donc si, on sait de manière relativement précise combien ça va coûter, et c’est clairement rentable. Et c’est clairement admis dans le monde entier, cf. cet extrait piqué à l’Agence internationale de l’énergie.

Policy and regulatory decisions remain critical to the fate of ageing reactors in advanced economies. The average age of their nuclear fleets is 35 years. The European Union and the United States have the largest active nuclear fleets (over 100 gigawatts each), and they are also among the oldest: the average reactor is 35 years old in the European Union and 39 years old in the United States. The original design lifetime for operations was 40 years in most cases. Around one quarter of the current nuclear capacity in advanced economies is set to be shut down by 2025 – mainly because of policies to reduce nuclear’s role. The fate of the remaining capacity depends on decisions about lifetime extensions in the coming years. In the United States, for example, some 90 reactors have 60-year operating licenses, yet several have already been retired early and many more are at risk. In Europe, Japan and other advanced economies, extensions of plants’ lifetimes also face uncertain prospects.
Economic factors are also at play. Lifetime extensions are considerably cheaper than new construction and are generally cost-competitive with other electricity generation technologies, including new wind and solar projects. However, they still need significant investment to replace and refurbish key components that enable plants to continue operating safely. Low wholesale electricity and carbon prices, together with new regulations on the use of water for cooling reactors, are making some plants in the United States financially unviable. In addition, markets and regulatory systems often penalise nuclear power by not pricing in its value as a clean energy source and its contribution to electricity security. As a result, most nuclear power plants in advanced economies are at risk of closing prematurely.

Bref. Une fois n’est pas coutume, on cherchera en vain la vérité dans la communication de Greenpeace. De la démagogie, de l’appel à l’émotion, des arguments foireux qui défient la technique, et répéter en boucle les mêmes inepties pour établir une sorte de vérité alternative qui leur sied davantage, voilà ce qu’ils ont à offrir…

La Pierre Jaune, Pt. V.

Retrouvez aux liens ci-après les première, deuxième, troisième et enfin quatrième partie de cette série. Nous continuons à commenter le script de cette vidéo :

Quand on parle de ce sujet, on nous accuse souvent de donner des idées aux terroristes.

Je ne pense pas que ce soit un reproche pertinent, en effet. Une des missions, sans doute la mission fondamentale, des acteurs de la protection contre les malveillances en tout genre, c’est de toute façon d’anticiper les idées que pourraient avoir des terroristes.

Mais en fait, les terroristes ne nous ont pas attendu pour avoir ces idées : la preuve, en 2011, quand les Américains sont allés tuer Oussama Ben Laden à Abbottabad au Pakistan, ils ont dans la foulée publié une série de documents qu’ils ont trouvé dans l’ordinateur du cerveau des attentats du 11 septembre. Dans ces documents, il avait deux rapports sur le nucléaire en France, dont l’un était signé justement par l’expert allemand qui a alerté sur la faille de l’usine nucléaire de la Hague.

Selon cet article, les documents en question, qui ont été retrouvés au domicile du célèbre terroriste, étaient le rapport Nuclear France Abroad de 2009 et de France on Radio­active Waste Management de 2008, deux documents de Mycle Schneider, le militant antinucléaire mentionné dans le précédent billet et de ses proches (WISE-Paris, etc.).

Ce sont des rapports publics, synthétisant des informations publiques, sans focus particulier sur la sécurité et la protection contre la malveillance. Il va de soi que si ces documents comportaient des informations compromettantes pour la sécurité nationale, Mycle Schneider et les siens seraient derrière les barreaux. Donc avoir retrouvés ces documents à Abbottabad indique que Ben Laden et ses équipes s’étaient intéressés au nucléaire français… Et c’est tout. Il n’est pas permis d’en déduire si une attaque était envisagée, ni laquelle.

Mais, effectivement, ils s’y étaient au moins intéressés, et donc on ne peut pas reprocher aux militants antinucléaires d’aborder le sujet. En revanche, on peut leur reprocher d’en dire n’importe quoi.

Ça peut paraître dingue que l’État français sache qu’un attentat de cette ampleur ou un accident seraient possible sur l’une de ces installations nucléaires et qu’il ne fasse rien.

Et c’est un bon exemple de n’importe quoi, justement. Ce qui fait plaisir, c’est que le journaliste-auteur ne fait pas comme s’il découvrait quelque chose de notoirement connu, il a conscience que ce qu’il raconte est connu, au moins des autorités.

Mais il considère que rien n’est fait en réponse à ce risque. Est-ce :

  • parce qu’il n’a pas cherché à savoir ce qui était fait, donc en a déduit que rien n’était fait ?
  • parce que les trois idées qu’il a eu ou qu’on lui a suggéré n’ont pas été retenues qu’il en a déduit qu’aucune autre idée n’avait pu être mise en œuvre ?
  • parce qu’il n’a pas trouvé ce qui était fait qu’il en a déduit que rien n’était fait ?

En fait, le problème du nucléaire c’est qu’il est né dans le secret, il s’est construit dans le secret… Le problème c’est que ce secret n’existe pas : on peut trouver toutes les informations qu’il nous faut, elles existent déjà sur Internet ou dans les journaux. L’État, lui, se drape dans cette croyance, qui est fausse, selon laquelle le secret le protège encore.

Là, on tombe dans un paradoxe typique… Des complotistes. Vous savez, ces gens persuadés de toutes leurs forces de grandes magouilles pour dissimuler la vérité au monde entier… Tout en étant convaincus qu’il « suffit de faire ses propres recherches » pour trouver la vérité ? Ceux qui pensent trouver sur Youtube des démonstrations qui échappent aux esprits les plus brillants de ce monde ?

Ici, nous sommes dans cette même configuration, mais inversée : parce qu’il trouve des informations sur internet, le journaliste-auteur considère que rien n’est secret. Sans envisager que les secrets sur lesquels repose vraiment la protection puissent être… secrets. Et donc hors de sa portée.

Pourtant, les élus ayant participé en 2018 à la Commission d’Enquête sur la sûreté et la sécurité des installations nucléaires l’ont bien constaté : ne parvenant à se faire habiliter Confidentiel ou Secret Défense, ils n’ont pu consulter certaines informations techniques sur la protection des installations nucléaires contre les malveillances… Et notamment des piscines d’entreposage de combustible vis-à-vis d’un projectile (avion, missile…).

Oui, l’industrie nucléaire a des origines militaires et donc est née dans le secret. Et si aujourd’hui les activités militaires et civiles sont bien séparées, si la transparence est devenue la norme en matière de sûreté… La protection contre les menaces de nature militaire (terrorisme, notamment) reste, elle, dans le secret. Et que ce journaliste ait échoué à accéder aux informations tenues secrètes devrait l’inciter à penser que le secret est bien protégé, et non pas que ces informations… N’existent pas.

Je pense qu’il n’y a qu’une catastrophe qui pourra nous faire prendre conscience du problème. Et je préfère qu’elle arrive d’abord en fiction pour tenter de nous faire prendre conscience de cet énorme talon d’Achille, plutôt qu’elle arrive en vrai. Même si, malheureusement, il faut souvent attendre les vraies catastrophes pour avoir des vraies prise de conscience.

A deux doigts de souhaiter une catastrophe pour pouvoir dire « Ha, j’avais raison ». Heureusement qu’il ne s’agit que d’un livre… Ça serait grave de le présenter comme un journaliste d’investigation.

La boucle est bouclée.

La Pierre Jaune, Pt. IV.

Retrouvez aux liens ci-après les première, deuxième et troisième partie de cette série. Nous continuons à commenter le script de cette vidéo :

En cas d’accident nucléaire sur l’usine de la Hague, certains spécialistes estiment qu’entre 25 et 40% de l’Europe pourraient ne plus être habitables. Il faut prendre ces chiffres avec des pincettes, mais disons que cette hypothèse nous montre à quel point on a une épée de Damoclès gigantesque au-dessus de la tête.

Cela va être vite vu… Qui sont les spécialistes en question, quel est le critère pour dire que le territoire est rendu inhabitable ?

Oui, prenons ces chiffres avec ces pincettes et faute de source et d’explication, jetons les prudemment dans la plus proche poubelle. Et donc écartons cette hypothèse et l’épée de Damoclès impliquée.

Dans mon livre j’imagine qu’un avion tombe sur la piscine D de l’usine nucléaire de la Hague parce que cette hypothèse a été au centre des débats. Finalement l’État français avait reconnu que, au bas mot, une telle catastrophe serait au moins équivalente à sept fois Tchernobyl.

Au centre des débats, mais de quels débats ? En matière de sûreté nucléaire, tout a été tôt ou tard au centre d’un débat donné.

En revanche, il est semble-t-il vain de trouver trace de « l’État français » qui viendrait cautionner cette affirmation. Dans ce vieil article du même auteur, auquel nous serons amenés à faire plusieurs références, il est seulement question du Ministre de l’Environnement en exercice à l’époque des attentats du 11 septembre, le Vert Yves Cochet, qui affirmait que « si un avion tombe sur les piscines de La Hague, avec les vents d’ouest qui ramènent toujours tout sur l’Ile-de-France, vous comme moi nous ne serons plus là pour en parler ». Ce sont des propos qui engagent Yves Cochet tout au plus, ce n’est pas une reconnaissance au niveau de l’État qu’un tel scénario serait « au moins équivalent à sept fois Tchernobyl ».

Et d’abord, qu’est-ce que c’est censé vouloir dire, « 7 fois Tchernobyl » ? Le Tchernobyl n’est une unité de mesure reconnue dans aucun système d’unités dont j’ai connaissance. Est-ce 7 fois plus de cancers ? 7 fois plus d’évacués ? 7 fois plus de km² contaminés ? 7 fois plus de km² de territoire à évacuer ? 7 fois plus de réacteurs concernés ?

Je vous renvoie à la première partie de cette série d’articles, dans laquelle j’affirmais que, selon moi et au vu des méthodes marketing de la maison d’édition, « 7 fois Tchernobyl » n’est pas un argument, ni même une idée : seulement une punchline, un slogan pour vendre. Je maintiens ici cette affirmation…

Mais tentons donc de comprendre cette affirmation. Avec quelques mots clés adaptés, je pense que l’origine de cette affirmation remonte aux lendemains des attentats de 2001. Dans cette archive du Monde, on nous explique un calcul de WISE-Paris (Mycle Schneider, encore) selon lequel il y aurait un kilogramme ce Césium 137 par assemblage combustible, chiffre que je ne suis pas en mesure de réfuter ni vérifier mais qui ne me choque pas. Multiplié par la quantité de combustible alors entreposée à l’usine, et l’on arrive à 7,58 tonnes, soit 287 fois la quantité relâchée par l’accident de Tchernobyl. Si une des piscine remplie à la moitié de sa capacité était touchée par un avion, en supposant que 100% du césium 137 est relâché, on aboutit à un relargage de 1761 kg de césium, soit 66,7 fois Tchernobyl. Le mythe est né !

Sauf que dans le cas de Tchernobyl, un réacteur qui a littéralement explosé, 30 à 40% du césium contenu dans le cœur a été libéré. Il va de soi qu’en cas de chute d’un avion sur la Hague, le scénario serait bien moins dispersif, et donc qu’on ne peut décemment pas retenir cette hypothèse de 100% du césium relâché. Toujours dans l’article des Inrocks, du même auteur, précédemment cité, l’on explique que lorsque ce nombre de 66,7 a été publiée, la présidente d’AREVA, Anne Lauvergeon, était montée au créneau. Et que l’IRSN aurait produit une note selon laquelle seul 10% du césium serait, en toute vraisemblance, relâché. Et voilà notre facteur 6.7. Invérifiable, ceci dit…

Mais.

Est-il seulement pertinent ? Est-il d’une part pertinent de prendre la quantité de césium 137 comme indicateur, et d’autre part pertinent d’en faire un « fois Tchernobyl » ? Disons le franchement, cela revient à résumer Tchernobyl en quantité de césium. Pas en nombre de cancers, pas en nombre d’évacués, pas en km² contaminés ou évacués… Pas même en quantité de radioactivité, ni en potentiel de danger ! Le césium 137 est loin d’être le seul radionucléide relâché à Tchernobyl. Et s’il est le plus nocif à moyen et long terme – il contamine durablement et sur une très large distance l’environnement – il n’est même pas le plus délétère pour la santé humaine. La majorité des pathologies que l’on doit à Tchernobyl, on les doit à l’iode 131 – on en reparle plus loin.

Mais réalisez : la punchline au cœur de la campagne marketing, c’est basé sur une note confidentielle qui conteste un calcul de coin de table d’une association antinucléaire, qui est peu pertinent car considère un seul aspect, et à laquelle on fait dire ce qu’elle ne dit pas en transformant « x fois la quantité de césium relâchée à Tchernobyl » en « x fois Tchernobyl ». C’est pratique, chacun entendra ce qu’il aura le plus envie d’entendre.

Par contre, niveau éthique, sérieux… Ça se pose là.

Je me suis dit que la fiction allait nous permettre d’expérimenter la survie en territoire contaminé.

OUI.

C’est en effet à cela que peut servir une fiction. À se projet dans un scénario, réaliste, ou seulement crédible, ou totalement fantasmé. Il est même tout à fait possible d’écrire une fiction que l’on veut réaliste en y introduisant quelques éléments complètement surnaturels. Je ne serais pas surpris qu’existe, par exemple, des œuvres de science-fiction dans lesquelles on admet un élément complètement irréaliste (l’humanité se dote d’un moyen de propulsion dans l’espace qui s’affranchit du besoin d’énergie et de la limite de la vitesse de la lumière) et qui, en dehors de cet écart, se veut totalement réaliste.

Hélas, ce n’est pas dans cette démarche là qu’est l’édition Goutte d’Or. Il n’est pas question d’admettre quelque chose d’irréel et de dérouler une histoire ensuite, il est question de le justifier par tous les moyens possibles, quitte à réinventer non pas son récit, mais… La réalité.

Il y a notamment un spécialiste en radiations qui m’a beaucoup aidé.

Il semblerait de ses diverses interventions dans les médias que le « spécialiste en radiations » soit Mycle Schneider, un militant antinucléaire allemand (que l’on oubliera soigneusement de présenter comme militant). Dont je n’ai pas connaissance d’une spécialisation en radioprotection ; j’accuse ici, un peu gratuitement je l’admets, un argument d’autorité malhonnête. Sa fiche Wikipédia en anglais mentionne une participation à un groupe d’expert sur la non-prolifération, qui est un sujet bien différent.

S’il fallait partir de chez soi en catastrophe, il faudrait se protéger avec des casques de moto des moufles, n’avoir aucune partie du corps en contact avec l’extérieur, ou se calfeutrer.

C’est une possibilité. Dans un scénario d’accident avec des rejets importants de radioactivité sous forme d’aérosols (des petites particules solides ou liquides mais assez légères pour être emportés dans les gaz, dans le vent…), et de retombées de cette radioactivité, se protéger est une idée. Et en cas de déclenchement du Plan Particulier d’Intervention, deux familles de scénarios, pour les populations, sont à considérer.

Dans le plus souple, en cas notamment de rejets dont on sait qu’ils seront limités dans le temps, il s’agit de se calfeutrer, se confiner. Couper la ventilation de la maison, essayer d’isoler les aérations, et attendre. Le confinement va éviter que l’air ambiant de votre abri (maison, lieu de travail, établissement recevant du public…) ne se charge trop en radioactivité au passage du panache, et donc éviter que vous soyez trop contaminé, en surface ou en interne.

Dans un cas plus rude, une évacuation peut s’imposer. Et en pareil cas, oui, il me semble pertinent de se couvrir le plus possible. Ainsi, la contamination sera retenue par vos vêtements qu’il suffira de jeter une fois à l’abri (puis procéder à une décontamination complémentaire au besoin), ce qui est plus simple que de changer de peau si celle-ci se voit contaminée, vous en conviendrez. Rappelons toutefois que des vêtements sont une protection imparfaite : ils ne sont pas étanches, et ne protègent pas les voies respiratoires.

Néanmoins, j’admets volontiers que ces deux phrases sont pertinentes.

On ne pourrait plus boire l’eau du robinet, on ne pourrait plus boire l’eau qui tombe du ciel, on ne pourrait plus manger tous les aliments qui ont été en contact avec l’air…

Là encore, tout dépend des scénarios. Selon la nature et la quantité des rejets, des retombées, des infrastructures d’acheminement de l’eau…

Disons que dans un scénario extrême générique, sans se poser vraiment la question du « comment », l’affirmation se défend.

Et surtout, il faudrait savoir comment se décontaminer. Le premier réflexe c’est de se raser les cheveux, se raser les sourcils, se raser tous les poils du corps et prendre une longue douche. 

Je ne suis pas sûr que ce soit le « premier réflexe » à avoir, le fait de se confiner ou d’évacuer comme discuté précédemment arrivant beaucoup plus haut dans mon classement personnel.

Cependant, oui, en cas de contamination superficielle, les poils et cheveux peuvent retenir certains radioéléments, et une décontamination rapide et efficace peut demander de s’en défaire et de prendre une bonne douche.

Ensuite, il y a la contamination interne. C’est beaucoup plus compliqué car il y a beaucoup d’éléments radioactifs qui peuvent avoir été relâchés. Le Césium 137, lui, pour s’en débarrasser, il faudrait trouver du bleu de Prusse, ça se trouve en pharmacie, mais évidemment en cas de catastrophe il y aurait des pénuries. Vous l’ingérez, il va capturer le Césium dans votre corps et quand vous irez au toilette, vous l’évacuerez naturellement.

Je ne connais pas cette histoire de Bleu de Prusse, mais ça ne me choque pas, donc j’admets sans vérifier. En revanche, toute exposition au Césium 137 ne justifie pas nécessairement une telle mesure.

Le Césium 137 est un élément qui se désintègre spontanément en Baryum 137 en émettant un rayonnement β- de 500 keV d’énergie. Pour les différents types de rayonnements, je vous renvoie vers ce précédent billet. Quant à ce nombre de 500 keV, vous n’avez pas nécessairement besoin de le comprendre ; comprenez juste qu’il décrit l’intensité de la radiation émise. Ce Baryum 137 se stabilise ensuite en émettant quasiment instantanément un rayonnement γ de 700 keV d’énergie.

À titre de comparaison, le potassium 40, un élément radioactif naturellement présent dans l’organisme de nombreux êtres vivants (si ce n’est tous ? L’humain en fait en tout cas partie) se désintègre en émettant soit un rayonnement β- de 1300 keV, soit un rayonnement γ de 1500 keV. Et des désintégrations de potassium 40, cet isotope bien plus irradiant que le césium 137 donc, dans un corps humain adulte, il s’en produit 6000 à 8000 par seconde.

Vous comprendrez sans mal que si ce potassium 40 est inoffensif, il faut atteindre une certaine quantité de césium 137 pour commencer à présenter un danger, et donc dans notre scénario d’accident fictif, l’éliminer à l’aide de Bleu de Prusse n’est pas nécessairement un impératif ou une urgence sanitaire.

Pour ceux d’entre vous qui connaissent quelque peu les effets sanitaires des radiations, sachez que par ingestion de césium 137, le seuil de 100 mSv est atteint pour une incorporation de 0.91 GBq, 1.0 GBq et 0.77 GBq pour le nouveau-né, l’enfant de 5 ans et l’adulte, respectivement. Et par inhalation, respectivement 0.091 GBq, 0.14 GBq et 0.26 GBq.

Pour les autres, notez que des effets sanitaires sont à craindre uniquement en cas d’absorption d’une quantité assez conséquente de césium, et pas pour toute exposition au césium. Et que donc il n’y a pas besoin de bleu de prusse pour 25% de l’Europe (ni, vraisemblablement, 25% de la France).

Si vous êtes dans une zone qui devient contaminée, il faut prendre préventivement de l’Iode pour saturer sa thyroïde en Iode sain, ce qui va empêcher l’Iode radioactif qui va venir de s’y loger, car s’il s’y loge, après le risque de cancer est extrêmement élevé.

Aïe, aïe, aïe. Très grossière erreur… Ce qu’il affirme ici est vrai autour des centrales. J’explique tout ce que j’estime important à savoir sur la prise d’iode ici :

Mais il est nécessaire d’apporter une précision. La prise d’iode stable vise à protéger la thyroïde de l’iode 131 qui est produit dans un réacteur nucléaire lors de la fission (c’est un produit de fission) et qui est très volatil. Cependant, cet iode 131 a une demi-vie de 8 jours, c’est à dire que lorsqu’un réacteur s’arrête, la quantité d’iode 131 présente dans le combustible est réduite à 50% de sa valeur initiale après 8 jours, à 25% après 16 jours, à 12.5% après 24 jours, à 6.25% après un mois… À 0.1% après 10 fois la demi-vie, soit 80 jours.

Et le transport du combustible entre un réacteur nucléaire et la Hague il intervient au minimum après six mois, et en pratique après un an, voire deux. Six mois, c’est 23 fois la demi-vie de l’iode 131 : il reste 0.000012% de l’iode 131 après un tel délai.

Et à l’usine de la Hague, la très large majorité du combustible présent en piscine ne vient pas juste d’arriver mais est entreposé depuis des années. Un combustible qui refroidit, qui se « désactive » depuis 5 ans, c’est 2228 fois moins d’iode 131 qu’initialement : il y a probablement une teneur moins grande en iode 131 dans le combustible moyen à l’usine de la Hague que de substance active dans une préparation homéopathique.

À noter qu’il existe un autre isotope radioactif de l’iode dans le combustible usé, l’iode 129. Celui-ci a une demi-vie qui se compte en millions d’années, donc sa quantité n’a quasiment pas varié entre le moment où le combustible est sorti du cœur du réacteur et le moment où il est mis dans une piscine de l’usine de la Hague. Cependant, lorsque le réacteur est mis à l’arrêt, il y a environ cent millions de fois moins d’iode 129 que d’iode 131.

Une prise d’iode en cas d’accident à l’usine de la Hague n’est donc à priori pas justifiée, les rejets d’iode radioactif étant peu significatifs. D’ailleurs, dans le cadre des distributions préventives d’iode au voisinage des installations nucléaires, seules sont concernées les centrales EDF en production et quelques réacteurs de recherche, et pas l’usine de la Hague.

La grande problématique des cachets d’iode, c’est qu’ils ne durent que 24 heures. Des spécialistes essaient de trouver un Iode et des pastilles qui dureraient une semaine, mais pour l’instant on ne les a pas.

Je n’ai jamais entendu parler d’une efficacité limitée à 24h. Ayant une boîte de comprimés d’iode dans ma pharmacie, je lis la notice et je lis ceci ; « Le traitement consiste en une prise unique. Il ne doit être renouvelé que dans des cas exceptionnels, uniquement sur instruction des autorités compétentes. » Pas de contre-indication explicite donc, mais mon avis est qu’en cas de risque durable nécessitant de renouveler la prise d’iode, les scénarios de gestion de crise prévoient surtout une évacuation des populations menacées, qui ne sont donc pas supposées avoir besoin d’une deuxième prise, sauf cas particuliers.

Mais en effet, la distribution d’iode n’est pas pensée en faisant l’hypothèse que des réfractaires voudront demeurer sur place, comme c’est le cas dans ce roman, et qui auraient besoin d’iode stable comme traitement préventif de fond. Et je ne serais pas surpris par ailleurs qu’une prise régulière d’iode, même stable, soit délétère à court terme pour la thyroïde, rendant préférable la nocivité à long terme des radiations.

Quoi qu’il en soit, la question ne se pose même pas dans le cas qui nous intéresse ici, celui d’un accident nucléaire frappant l’usine de la Hague.

Plus qu’une dernière courte partie, et l’on sera venus à bout de cette vidéo.

La Pierre Jaune, Pt. III.

La première partie de cet article est à ce lien. La deuxième est à ce lien.
Ce qui suit est le script, commenté, de la vidéo de Konbini mentionnée dans le précédent billet et rappelée ci-dessous.

Il y a d’autres points faibles à l’usine nucléaire de la Hague. Il y a aussi les produits de fission, qui sont tous les déchets dont on sépare les combustibles des anciens cœurs de centrales. Ces produits sont extrêmement explosifs, tellement explosifs qu’on est obligé de les refroidir en permanence dans des cuves géantes. S’il y a des coupures d’électricité, ce qui est déjà arrivé, et que les générateurs de secours tombent en panne, ce qui est déjà arrivé, ça pourrait conduire à explosion et à des rejets massifs.

Dans le procédé de retraitement du combustible nucléaire mis en œuvre à l’usine de la Hague, le combustible est dans un premier temps cisaillé, puis dissout. Les solutions de dissolutions font l’objet d’un traitement chimique complexe pour en extraire les matières valorisables que sont l’uranium et le plutonium. À l’issue de ces étapes, les solutions ne sont plus qu’un concentré de substances radioactives non valorisables : les produits de fission. Les solutions feront l’objet d’ultimes traitements, et d’étapes de concentrations avant d’être vitrifiées pour produire les déchets à vie longue.

Ces solutions de produits de fission étant extrêmement radioactives, elles nécessitent de prendre en considération différents risques. Deux risques nous intéressent ici, il s’agit du risque de radiolyse, et du risque d’échauffement.

La radiolyse est la dissociation, sous l’effet des radiations, des molécules du solvant. Ce sont en particulier les atomes d’hydrogène qui ont tendance à se faire ainsi arracher aux atomes d’oxygène (dans l’eau) ou d’azote (dans l’acide nitrique). Atomes d’hydrogènes qui vont éventuellement se recombiner entre eux pour former du dihydrogène, un gaz qui, s’il s’accumule, induit un risque d’explosion. Ce ne sont pas les produits de fission à proprement parler qui sont donc explosifs, mais ils induisent un risque d’explosion par le dihydrogène qu’ils émettent par radiolyse. Pour maîtriser ce risque, la solution est plutôt rustique : injecter de l’air dans les équipements contenant des produits de fission. L’hydrogène va se diluer dans l’air, être drainé par la ventilation, et donc ne jamais s’accumuler jusqu’à des concentrations permettant son inflammation ou son explosion. Naturellement, des dispositions complémentaires viennent assurer la fiabilité de l’approvisionnement en air (redondances…), de la ventilation (tirage naturel…) et permettre de remédier à une perte d’approvisionnement en air de dilution. Mais il n’est pas sujet ici de reproduire une démonstration de sûreté, simplement d’expliciter le risque lié à l’hydrogène de radiolyse et indiquer qu’il est connu et pris en compte.

L’échauffement, quant à lui, est lié à la chaleur produite par les radiations. Les équipements contenant des produits de fission doivent être refroidis pour maintenir leur température à un niveau stable, avant tout pour éviter que les solutions n’entrent en ébullition. Car un tel phénomène conduirait au passage de nombreux produits de fission à l’état gazeux (ou aérosols) qui seraient alors emportés par la ventilation des équipements, conduisant à des rejets radioactifs excessifs dans l’environnement. Dans un scénario plus extrême, si l’ébullition produit davantage de gaz que la ventilation ne peut en extraire, les équipements peuvent être amenés à monter en pression, jusqu’à, éventuellement, leur rupture. Enfin, dans certains cas, une élévation de température peut conduire à des réactions chimiques indésirables. Comme l’air de dilution de l’hydrogène, le refroidissement fait l’objet de mesures de fiabilisation, de surveillance, et de remédiation en cas de défaillance.

Ce que vous aurez probablement constaté, c’est que je distingue d’une part l’explosivité liée à l’hydrogène, d’autre part la question du refroidissement. Parce que, de mes recherches, ne ressort aucune étape du procédé, concernant les produits de fission, dans lequel on refroidirait pour éviter une explosion. Selon moi, l’affirmation « Ces produits sont extrêmement explosifs, tellement explosifs qu’on est obligé de les refroidir en permanence dans des cuves géantes » ne repose sur rien.

Un twittos habile a suggéré une explication me semblant vraisemblable. Il avait souvenir d’articles de presse datés de 2017, qu’un autre twittos a retrouvés, sur un incident déclaré à l’usine de la Hague : une élévation de température dans une cuve de produits de fission à cause d’un problème de brassage. On est assez loin du scénario décrit dans l’interview dont nous parlons, mais on n’a pas plus proche. Sinon, encore un autre twittos a suggéré que le journaliste-auteur a pu simplement mélanger « ébullition » et « explosion », mais c’est une hypothèse peu charitable.

Cependant, l’avis d’incident sur le site de l’ASN, mentionne un risque de précipitation chimique (formation d’agglomérats de matière solide) en fond de cuve en cas de perte du brassage. La conséquence éventuelle serait alors que, localement, au niveau de ce précipité, la température pourrait augmenter jusqu’à perforer le fond de la cuve et provoquer sa vidange. Cependant, ce scénario était lointain, la température étant restée à 24 °C, loin du seuil d’alerte de 50 °C, et encore plus loin de températures dangereuses pour le métal de la cuve. Et, quand bien même, le risque aurait été celui d’un déversement de produits de fission dans le local où est implantée la cuve, pas d’explosion.

Enfin, signalons que la cuve dont il est question contenait des produits de fission issus du retraitement de combustibles anciens, ceux des réacteurs graphite-gaz (UNGG) dont le dernier a été arrêté en 1994. La vitrification des dernières solutions de produits de fission de combustibles UNGG s’est achevée en fin 2020.

Non, il me semble vraiment difficile d’exclure l’hypothèse que Geoffrey Le Guilcher affabule totalement, concernant cette histoire de produits de fission.

Et ça ne s’améliore pas dans la quatrième partie…

La Pierre Jaune, Pt. II.

La première partie de cet article est à ce lien. Ce qui suit est le script, commenté, de la vidéo de Konbini mentionnée dans le précédent billet et rappelée ci-dessous.

La plupart de mes sources sont en lien hypertexte au fil du texte. Petite parenthèse sur une autre source :

Pour les sujets relevant de la sûreté nucléaire concernant spécifiquement le site de la Hague, je me suis appuyé sur des documents mis à disposition du public lors d’enquêtes publiques concernant des modifications réglementaires des installations. Par nature de ces documents, les informations qu’ils contiennent sont publiques. Cependant, entre deux enquêtes publiques, les documents ne sont pas laissés à disposition du public. Il me semblait les avoir trouvés, fut un temps, sur le site de l’ASN, mais pas moyen de retrouver sur quelle page. Je les avais enregistrés en local, mais donc ne m’autoriserai pas à les diffuser. Ce sont donc des sources que, j’en ai conscience, vous ne pourrez pas vérifier, mais si un point ou un autre vous semble nettement contestable, faites moi signe, et nous chercherons éventuellement une source publique à l’appui de mes affirmations. Enfin, je me suis notablement appuyé sur mes connaissances de cours et expériences professionnelles quant à la sûreté nucléaire donc en ces cas… Pas de source externe, mais même chose : si besoin, on peut creuser. Bonne lecture !

En cas d’attentat sur l’usine nucléaire de la Hague, l’État français a admis que les conséquences pourraient être, au bas mot, au moins 7 fois pires que Tchernobyl. On ne pourrait plus boire l’eau du robinet, on ne pourrait plus boire l’eau qui tombe du ciel… Le premier réflexe c’est de se raser les cheveux, se raser les sourcils et tous les poils du corps. 

Ces affirmations reviennent à deux reprises dans la vidéo. Nous en discuterons à la deuxième occurrence, lorsqu’elles seront davantage contextualisées, expliquées, justifiées.

L’usine nucléaire de la Hague stocke une quantité de combustibles irradiés absolument phénoménale et on y trouve de tout : de l’uranium, du plutonium, des produits de fission…

Un vocabulaire rigoureux voudrait que l’on dise « entrepose » et non pas « stocke », mais c’est un détail, ici. Pour rappel, la nuance, inscrite dans la réglementation française, réside dans la durée : l’entreposage est temporaire, le stockage est définitif. L’usine de la Hague n’abrite aucune installation de stockage ; en revanche, attenant à l’usine, l’ANDRA (Agence nationale pour la gestion des déchets radioactifs) assure la surveillance d’un site de stockage de déchets de faible et moyenne activité à vie courte. Mais pour revenir à l’usine Orano, y sont effectivement entreposés uranium, plutonium et produits de fission. Ce sont là les trois principales familles de constituants du combustible usé, et le procédé de cette usine consiste justement à les séparer pour récupérer d’une part les matières valorisées (plutonium) ou valorisables (uranium) et, d’autre part, les déchets. Ces trois constituants sont donc nécessairement présentes en quantités variables dans l’usine, soient entremêlées au sein du combustible en attente de retraitement, soit séparées à l’issue du procédé de retraitement. Et à différentes étapes intermédiaires en cours de traitement.

Bref, jusque là, c’est bon.

La grande faille de cette usine nucléaire, ce sont ses quatre piscines. Dans chacune de ces piscines, il y a des anciens cœurs de réacteurs de centrales nucléaires qui sont en train de refroidir et on estime qu’il y a 2000 tonnes dans chaque piscine de combustible irradié.

En effet, avant retraitement, le combustible usé (c’est à dire, qui épuisé son potentiel énergétique en réacteur) est entreposé dans les piscines de l’usine. Entre 3 et 5 ans en général (auxquels on ajoute préalablement 1 à 2 ans dans les piscines des centrales nucléaires), et bien davantage pour le combustible MOX usé qu’aujourd’hui, on ne retraite pas (et donc qu’on entrepose en attendant de décider de le retraiter ou non).

Il y a effectivement quatre piscines d’entreposage de combustible dans le périmètre de l’usine de la Hague, nommées NPH, Piscine C, Piscine D et Piscine E. Avec près de 10 000 tonnes de combustible entreposées en fin 2016 (9 778 au 31 décembre), l’on serait à une moyenne de 2500 tonnes par piscine. Cette petite mise à jour du nombre est sans implication.

Un simple toit de tôle comme celui d’un hangar pour fruits et légumes les protège. Si un avion tombe sur l’une de ces piscines, le vrai danger c’est qu’il n’y ait plus d’eau autour des combustibles. Un incendie gigantesque pourrait se déclencher et à ce moment-là les éléments radioactifs qui pourraient être relâchés dans l’atmosphère seraient colossaux.

Dans un tel hangar, la tôle a pour but de protéger des intempéries avant tout : pluie, vent, et détritus (d’origine végétale, insecte, animale…). En revanche, il est vrai que des tôles n’assurent pas de fonction structurelle, ou de manière très limitée. Cette fonction est donc reprise par le treillis de poutre soutenant les tôles, la structure de la piscine. Treillis qui est clairement visible dans la vidéo.

Un ancien employé de la Hague préconisait de construire une cathédrale de béton. Il faut étudier ces solutions, essayer de remédier à ce point faible.

En effet, l’on comprendra sans mal que même ce réseau de poutres n’assure qu’une protection limitée contre les agressions, et qu’une tornade ou qu’un projectile massif pourrait en venir à bout. Et face à ce risque, la « bunkerisation », l’enfermement des piscines sous une épaisse coque en béton armé, est une réponse possible. C’est d’ailleurs l’une des réponses qui a été retenue pour une future nouvelle piscine, actuellement à l’étude par EDF.

Effectivement, étudier les vulnérabilités, les risques et leurs conséquences, et chercher à y remédier est une nécessité, et une démarche continue, notamment dans le cadre des rééxamens périodiques de sûreté. En revanche, que la solution de bunkeriser à posteriori n’ait pas été retenue n’implique pas que le risque n’est pas maîtrisé.

Encore faudrait-il caractériser le risque, car vis-à-vis de la chute d’un projectile, un matelas d’eau de quatre mètres d’épaisseur a des propriétés de freinage absolument considérables. Notons également que si les parois aériennes et le toit de la piscine sont en poutres et tôles, les parois du bassin sont autrement plus épaisses et complexes, car naturellement, l’éventualité d’une brèche, peu importe qu’elle soit inopinée ou provoquée par une agression humaine ou naturelle, a toujours été dans les esprits.

Ainsi, il appartient à l’IRSN (Institut de radioprotection et de sûreté nucléaire) et à l’ASN (Autorité de sûreté nucléaire) de challenger Orano sur la tenue des piscines à un accident d’origine interne ou externe ; et il appartient au HFDS (Haut fonctionnaire de défense et de sécurité) et au SGDSN (Secrétariat général de la défense et de la sécurité nationale) de challenger l’industriel sur sa prise en compte des risques de malveillance. Et de prendre ou faire prendre des mesures si nécessaire, ce qui ne semble pas s’imposer à l’heure actuelle, en témoigne l’extrait ci-dessous du Rapport fait au nom de de la Commission d’Enquête sur la sûreté et la sécurité des installations nucléaires (2018).

« L’ensemble de ces mesures semble rendre les installations nucléaires françaises robustes face au risque terroriste :

  • une bonne anticipation. Comme l’indique M. Pascal Bolot, directeur de la protection et de la sécurité de l’État, la directive nationale de sécurité pour le secteur nucléaire traite de l’ensemble des menaces aujourd’hui concevables : « la menace externe liée à des tirs extérieurs, courbes ou directs, vers des centrales nucléaires ; les intrusions malveillantes, qu’elles soient le fait d’ONG ou d’autres organisations (…) ; les menaces internes enfin (…), les menaces cyber« . Cette analyse de la menace est actualisée deux fois par an.
  • des moyens humains significatifs. Aux 1 000 gendarmes des PSPG, s’ajoutent « le personnel de sécurité d’EDF, plus le personnel sous-traitant de sécurité d’EDF, soit des sociétés privées de sécurité, plus des personnes recrutées pour assurer le filtrage à l’entrée et le personnel de sécurité spécialisé d’Orano et du CEA. Cela représente un investissement collectif qui est loin d’être négligeable. » Environ 4 000 personnes se consacreraient à la protection des centrales nucléaires. Toujours selon M. Pascal Bolot, « en comparaison avec d’autres pays, nous sommes, en proportion du nombre de centrales nucléaires, dans le haut du spectre« .
  • des exercices réguliers. Comme l’indique Mme. Régine Engström, « nous menons également une politique d’exercices de sécurité de grande envergure (…). Nous émettons ensuite des recommandations adressées aux opérateurs et dont nous assurons le suivi. Les exercices peuvent servir à orienter la stratégie de réponse à la gestion de crise, orienter les contrôle en inspection, pointer les sujets qui nécessitent des réflexions approfondies ».

Mme. Régine Engström insiste « sur le fait que l’AIEA avait jugé, dès 2011, que le dispositif de de sécurité nucléaire français était solide. Une nouvelle mission de cet organisme, sollicitée par le Président de la République, s’est déroulée du 12 au 28 mars 2018, conduite par neuf experts internationaux désignés par l’Agence. Elle vient de confirmer que le dispositif de sécurité nucléaire français était ‘bien établi et robuste’ « . Enfin, selon M. Nicolas Hulot, ministre d’État, ministre de la transition écologique et solidaire, « si l’on en croit les missions internationales qui viennent évaluer de temps en temps nos propres dispositifs, il faut objectivement reconnaître que nous sommes plutôt bien dotés, mais cela ne signifie pas, dans ce domaine comme dans beaucoup d’autres, que le risque est totalement maîtrisé« . »

Vous l’aurez lu ici. Selon Barbara Pompili (auteure du rapport dont il est question ici) et Nicolas Hulot, deux ministres de l’écologie, tour à tour, et anti-nucléaires notoires, la sécurité des installations nucléaires françaises n’est pas un sujet d’alerte, simplement de veille et d’amélioration continue.

Et, pour conclure sur cette partie, vous aurez noté que, si Geoffrey Le Guilcher a raison d’affirmer que « Il faut étudier ces solutions, essayer de remédier à ce point faible », l’organisation de la sûreté et de la sécurité nucléaires en France ne l’ont pas attendu pour y penser.

On se retrouve dans une troisième partie pour la suite de l’interview…

La Pierre Jaune, Pt. I.

Nous sommes en février 2021, et vient de paraître aux éditions Goutte d’Or un roman de Geoffrey Le Guilcher, La Pierre Jaune.

Un jour de forte pluie, Jack surgit à la Pierre Jaune, lieu-dit d’un village breton. Cet homme tatoué au strabisme prononcé rend visite à son nouvel ami membre des Jauniens, une communauté d’activistes. À 200 km de là survient un spectaculaire attentat contre l’usine nucléaire de la Hague. Pluies acides, radioactivité, la Bretagne compte parmi les zones à évacuer. Par entêtement, les Jauniens décident de rester sur leur presqu’île. Au nom d’un motif inavouable, Jack les imite. Une étrange survie débute.

Je ne suis pas critique littéraire, loin s’en faut, et admets sans mal que des infrastructures existantes puissent servir de prétexte, de la manière aussi fantaisiste que vous le souhaiterez, à un scénario par exemple post-apocalyptique.

Cependant, la médiatisation de cet ouvrage interpelle.

Marketing

Le résumé précédent, je le comprends ainsi : l’histoire narrée dans La Pierre Jaune a comme élément déclencheur un accident nucléaire d’origine terroriste dans l’usine de retraitement de la Hague. On présentait cette usine sur ce blog il y quelques mois : Visite guidée de l’usine de retraitement de la Hague. L’histoire semble porter sur un groupe d’individus contraints à la survie à proximité (relative) du site nucléaire et sous les retombées radioactives de l’accident.

Toutefois, le marketing qui a été mis en œuvre pour communiquer sur la publication du roman s’axe non pas sur les péripéties des personnages, mais sur cet initiateur. Disons le clairement : l’auteur est journaliste de profession et son ouvrage est présenté, implictement ou explicitement comme une enquête sur l’éventualité d’un tel attentat.

J’ai entendu parler de ce roman par cette interview de Slate, présentant quelques extraits du roman.

La menace officielle planant au-dessus de La Hague tombait ainsi à 6,7 fois Tchernobyl. C’est cette hypothèse basse qui est retenue dans La Pierre jaune.

« Un accident grave comme 7 fois Tchernobyl », voilà ce qui semble avoir été identifié par l’équipe marketing de l’éditeur – ou par l’auteur ? – comme étant la punchline sur laquelle devait reposer la campagne de promotion.

Dans Neon Mag, une longue interview de l’auteur. Il y est question d’un classement, par l’auteur, de son roman comme d’un « roman d’anticipation réaliste ». Voilà ma tolérance ébréchée, puisque cette prétention, suffisante pour convaincre le lecteur lambda que ce réalisme sera au rendez-vous, doit reposer sur une solide connaissance et documentation.

J’irai jusqu’à dire que je comprendrais que l’accident postulé ne soit pas réaliste, pour peu que le soit la survie en milieu contaminé, sujet principal du roman. Mais non, on nous dit bien dans cette interview que « l’hypothèse est acceptée et a été calculée ». Oui, l’auteur affirme que son roman est une fiction réaliste basée sur des hypothèses réaliste. Donnant tout son sens à une campagne de marketing basée sur les conséquences éventuelles, évaluées en « fois Tchernobyl » pour que chacun y retrouve les peurs qui le touchent le plus.

Tout ce thread, par le compte Twitter de la maison d’édition elle-même, vise à légitimer l’hypothèse de départ.

Et l’on ne sera pas surpris de le retrouver relayé par…

Oui, immédiatement, ça devient suspect. Pour le grand public, c’est un gage de sérieux ; pour les initiés, c’est un motif de méfiance maximale et de doute immédiat.

Cet éditeur est, je l’ai appris entre temps dans ce reportage de La Revue des Médias de l’INA, adepte des communications choc. Notons que, tel que je comprends l’article, la maison d’édition se compose de deux personnes ; Clara Tellier Savary et Geoffry Le Guilcher, l’auteur du roman qui nous intéresse ici. Ainsi, alors que jusqu’à présent nous discutions d’une part des choix de l’éditeur, d’autre part des communications de l’auteur, il faut noter qu’en réalité, l’un et l’autre ne sont qu’un.

Mais ce qui m’a le plus marqué dans ce reportage de la Revue des Médias, c’est cette idée-ci :

« On s’est entraînés à résumer le livre en une phrase, en deux phrases, en trois phrases, en cinq phrases »

« Ils mettent autant de soin à préparer un post sur les réseaux sociaux qu’à éditer leurs bouquins »

Vous le voyez, le « 7 fois Tchernobyl » qui a été désigné comme l’accroche taillée sur mesure pour les réseaux sociaux, pour en une phrase, hameçonner un maximum de monde ?

Il ne restait plus qu’à maquiller ceci en journalisme d’investigation, et c’est le média de divertissement Konbini qui s’en est chargé.

Sur Twitter et sur Facebook notamment – je ne côtoie pas d’autres RS pour comparer – cette vidéo a été largement diffusée. En cinq minutes, dont, somme toute, moins d’une consacrée au livre, le journaliste-auteur-éditeur expose différents risques, éludant évidemment leur prise en compte pour aller directement aux conséquences éventuelles « selon des experts », pour en expliquer les conséquences apocalyptiques.

Cinq minutes durant lesquelles quasiment rien de correct ou convenablement contextualisé n’est dit.

Un prochain billet sur ce blog sera l’opportunité de regarder de près le script de la vidéo, et ça commence ici.